Abstract
AbstractRheological properties are the theoretical basis and the key to common problems in ferrofluid applications, therefore they are expected to be adjustable to satisfy different technical requirements through altering the microstructure of ferrofluid during the process of preparation. In this paper, Four ferrofluid samples with different magnetic particle size were prepared by controlling the concentration of precursor solution during co-precipitation process and the rheological properties of these samples were investigated. These samples exhibited field-controlled rheological properties. Eternal magnetic field would enhance the formation of microstructures, resulting in an increase of viscosity. While with the increase of shear rate, microstructures tended to be destroyed, causing viscosity to decrease. There were two opposing mechanisms of the influence of precursor solution concentration. On one hand, the reduction of the precursor solution concentration would produce primary magnetic particles of smaller size. But on the other hand, the surfactant became insufficient to completely coat the magnetic particles because of an increased specific surface area, causing the magnetic particles to aggregate and form secondary clustering structures which strongly enhanced the magnetoviscous effect and weakened the viscoelastic effect.
Funder
National Natural Science Foundation of China
beijing municipal natural science foundation
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献