Model of Surface Texture for Honed Gear Considering Motion Path and Geometrical Shape of Abrasive Particle

Author:

Liu Yuhu,Huang Xiaohui,Cao Huajun,Wang Jiacheng,Xiao Huapan

Abstract

AbstractGear power-honing is mainly applied to finish small and medium-sized automotive gears, especially in new energy vehicles. The distinctive curved surface texture greatly improves the noise emission and service life of honed gears. The surface texture for honed gear considering the motion path and geometrical shape of abrasive particles has not been investigated. In this paper, the kinematics of the gear honing process is analyzed, and the machining marks produced by the abrasive particles of honing wheel scratching abrasive particles against the workpiece gear are calculated. The tooth surface roughness is modeled considering abrasive particle shapes and material plastic pile-ups. This results in a mathematical model that characterizes the structure of the tooth surface and the orientation of the machining marks. Experiments were used to verify the model, with a maximum relative error of less than 10% when abrasive particles are spherical. Based on this model, the effects of process parameters on the speeds of discrete points on the tooth flank, orientations of machining marks and roughness are discussed. The results show that the shaft angle between the workpiece gear and the honing wheel and the speed of the honing wheel is the main process parameters affecting the surface texture. This research proposes a surface texture model for honed gear, which can provide a theoretical basis for optimizing process parameters for gear power-honing.

Funder

national key research and development plan

chongqing postdoctoral science special foundation

Liuzhou Science and Technology Project

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3