Abstract
AbstractPolishing plays an indispensable role in optical processing, especially for large-aperture optical reflective mirrors with freeform surfaces. Robotic polishing requires effective control of the contact force between the robot and the mirror during processing. In order to maintain a constant contact force during polishing, traditional polishing robots rely on closed-loop control of air cylinders, whose performances heavily rely on high-fidelity force sensing and real-time control. This paper proposes to employ a compliant constant-force mechanism in the end-effector of a polishing robot to passively maintain a constant force between the robot and the mirror, thus eliminating the requirement for force sensing and closed-loop control. The compliant constant force mechanism utilizing the second bending mode of fixed-guided compliant beams is adopted and elaborated for the passive end-effector. An end-effector providing a constant contact force of 40 N is designed and prototyped. The polishing experiment shows that the passive constant-force end-effector provides stable contact force between the robot and the mirror with fluctuation within 3.43 N, and achieves RMS (Root Mean Square) lower than λ/10 (λ = 632.8 nm) of the polished surface of the large-aperture optical reflective mirror. It is concluded that the constant-force compliant mechanism provides a low-cost and reliable solution for force control in robotic polishing.
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Reference25 articles.
1. L S Tsesnek, V E Guzman, Y N Nasonov, et al. Equipment for the grinding & polishing of optical-components on production liens. Soviet Journal of Optical Technology, 1981, 48(10): 623-632.
2. R K Pal, H Garg, V Karar. Material removal characteristics of full aperture optical polishing process. Machining Science and Technology, 2017, 21(4): 493-525.
3. X Wu, Z Huang, Y J Wan, et al. A novel force-controlled spherical polishing tool combined with self-rotation and co-rotation motion. IEEE Access, 2020, 8: 108191-108200.
4. X D Zhang, H Chen, N Yang, et al. A structure and control design of constant force polishing end actuator based on polishing robot. 2017 IEEE International Conference on Information and Automation (IEEE ICIA 2017), 2017: 764-768.
5. S Moriyasu, C Liu, W Lin, et al. Development of ultra-precision constant pressure spindle head for aspherical grinding/polishing. In: Progress of machine technology. Aviation Industry Press, 2002: 494-497.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献