Abstract
AbstractIt can be known from a large number of research results that improving the dispersibility of CNTs can effectively optimize the mechanical properties of the corresponding metal matrix composites. However, the crucial issue of increasing the bonding of CNTs and the matrix is still unsolved. In this paper, a novel method was developed to increase interfacial bonding strength by coating titanium oxide (TiO2) on the surface of CNTs. The rare earth Pr and TiO2@CNTs-reinforced AZ91matrix composites were successfully fabricated by powder metallurgy. Hot press sintering and hot extrusion of the milled powder was performed. After hot extrusion, the influence of TiO2@CNTs on the microstructure and mechanical properties of the composites were investigated. The results showed that the coating process can improve the distribution of CNTs in Mg alloy. The CNTs refined the grains of the matrix, and the CNTs were presented throughout the extrusion direction. When the TiO2@CNTs content was 1.0 wt.%, the yield strength (YS), ultimate tensile strength (UTS), and elongation of the alloy attained maximum values. The values were improved by 23.5%, 82.1%, and 40.0%, respectively, when compared with the AZ91 alloy. Good interfacial bonding was achieved, which resulted in an effective tensile loading transfer at the interface. CNTs carried the tensile stress and were observed on the tensile fracture.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Reference30 articles.
1. Changlin Yang, Bin Zhang, Dongchen Zhao, et al. Microstructure evolution of as-cast AlN/AZ91 composites and room temperature compressive properties. Journal of Alloys and Compounds, 2019, 774: 573-580.
2. K Evgeniya, B Salar, K Johannes, et al. Development of Al–Mg–Sc thin foils for fiber‐reinforced metal laminates. Advanced Engineering Materials, 2019, 21(4): 1800462.
3. Zhi Hu, R L Liu, Kairy Shravan, et al. Effect of the Sm additions on the microstructure and corrosion behavior of magnesium alloy AZ91. Corrosion Science, 2019, 149: 144-152.
4. Hong Yan, Zhiwei Wang. Effect of heat treatment on wear properties of extruded AZ91 alloy treated with yttrium. Journal of Rare Earths, 2016, 34(3): 308-314.
5. Y H Zhang, Z H Hou, Y Cai, et al. Structures and hydrogen storage properties of RE–Mg–Ni–Mn-based AB2-type alloys prepared by casting and melt spinning. Rare Metals, 2016(10): 1-11.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献