Numerical Investigation on Fracture Initiation Properties of Interface Crack in Dissimilar Steel Welded Joints

Author:

Zhao Longfei,Shao Chendong,Takashima Yasuhito,Minami Fumiyoshi,Lu FengguiORCID

Abstract

AbstractFracture toughness property is of significant importance when evaluating structural safety. The current research of fracture toughness mainly focused on crack in homogeneous material and experimental results. When the crack is located in a welded joint with high-gradient microstructure and mechanical property distribution, it becomes difficult to evaluate the fracture toughness behavior since the stress distribution may be affected by various factors. In recent years, numerical method has become an ideal approach to reveal the essence and mechanism of fracture toughness behavior. This study focuses on the crack initiation behavior and driving force at different interfaces in dissimilar steel welded joints. The stress and strain fields around the crack tip lying at the interfaces of ductile-ductile, ductile-brittle and brittle-brittle materials are analyzed by the numerical simulation. For the interface of ductile-ductile materials, the strain concentration on the softer material side is responsible for ductile fracture initiation. For the ductile-brittle interface, the shielding effect of the ductile material plays an important role in decreasing the fracture driving force on the brittle material side. In the case of brittle-brittle interface, a careful matching is required, because the strength mismatch decreases the fracture driving force in one side, whereas the driving force in another side is increased. The results are deemed to offer support for the safety assessment of welded structures.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3