Author:
Zhang Changchun,Liu Tingting,Liao Wenhe,Wei Huiliang,Zhang Ling
Abstract
AbstractLaser powder bed fusion (LPBF) is an advanced manufacturing technology; however, inappropriate LPBF process parameters may cause printing defects in materials. In the present work, the LPBF process of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy was investigated by a two-step optimization approach. Subsequently, heat transfer and liquid flow behaviors during LPBF were simulated by a well-tested phenomenological model, and the defect formation mechanisms in the as-fabricated alloy were discussed. The optimized process parameters for LPBF were detected as laser power changed from 195 W to 210 W, with scanning speed of 1250 mm/s. The LPBF process was divided into a laser irradiation stage, a spreading flow stage, and a solidification stage. The morphologies and defects of deposited tracks were affected by liquid flow behavior caused by rapid cooling rates. The findings of this research can provide valuable support for printing defect-free metal components.
Funder
The Development of a Verification Platform for Product Design, Process, and Information Exchange Standards in Additive Manufacturing
Key Technologies Research and Development Program
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献