Source Quantitative Identification by Reference-Based Cubic Blind Deconvolution Algorithm

Author:

Luo Xin,Zhang ZhousuoORCID,Gong Teng,Li Yongjie

Abstract

AbstractThe semi-blind deconvolution algorithm improves the separation accuracy by introducing reference information. However, the separation performance depends largely on the construction of reference signals. To improve the robustness of the semi-blind deconvolution algorithm to the reference signals and the convergence speed, the reference-based cubic blind deconvolution algorithm is proposed in this paper. The proposed algorithm can be combined with the contribution evaluation to provide trustworthy guidance for suppressing satellite micro-vibration. The normalized reference-based cubic contrast function is proposed and the validity of the new contrast function is theoretically proved. By deriving the optimal step size of gradient iteration under the new contrast function, we propose an efficient adaptive step optimization method. Furthermore, the contribution evaluation method based on vector projection is presented to implement the source contribution evaluation. Numerical simulation analysis is carried out to validate the availability and superiority of this method. Further tests given by the simulated satellite experiment and satellite ground experiment also confirm the effectiveness. The signals of control moment gyroscope and flywheel were extracted, respectively, and the contribution evaluation of vibration sources to the sensitive load area was realized. This research proposes a more accurate and robust algorithm for the source separation and provides an effective tool for the quantitative identification of the mechanical vibration sources.

Funder

National Natural Science Foundation of China

Science Challenge Project

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3