Multi-Branch Cable Harness Layout Design Based on Genetic Algorithm with Probabilistic Roadmap Method

Author:

Zhao Yingfeng,Liu Jianhua,Ma Jiangtao,Wu Linlin

Abstract

AbstractCurrent studies on cable harness layouts have mainly focused on cable harness route planning. However, the topological structure of a cable harness is also extremely complex, and the branch structure of the cable harness can affect the route of the cable harness layout. The topological structure design of the cable harness is a key to such a layout. In this paper, a novel multi-branch cable harness layout design method is presented, which unites the probabilistic roadmap method (PRM) and the genetic algorithm. First, the engineering constraints of the cable harness layout are presented. An obstacle-based PRM used to construct non-interference and near to the surface roadmap is then described. In addition, a new genetic algorithm is proposed, and the algorithm structure of which is redesigned. In addition, the operation probability formula related to fitness is proposed to promote the efficiency of the branch structure design of the cable harness. A prototype system of a cable harness layout design was developed based on the method described in this study, and the method is applied to two scenarios to verify that a quality cable harness layout can be efficiently obtained using the proposed method. In summary, the cable harness layout design method described in this study can be used to quickly design a reasonable topological structure of a cable harness and to search for the corresponding routes of such a harness.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference35 articles.

1. H Park, H Lee, M R Cutkosky. Computational support for concurrent engineering of cable harnesses. Computes in Engineering, 1992, 1: 261-268.

2. P B Holt, J M Ritchie, P N Day, et al. Immersive virtual reality in cable and pipe routing: design metaphors and cognitive ergonomics. Journal of Computing and Information Science in Engineering, 2004, 4(3): 161-170.

3. G Robinson, J M Ritchie, P N Day, et al. System design and user evaluation of Co-Star: An immersive stereoscopic system for cable harness design. Computer-Aided Design, 2007, 39(4): 245-257.

4. D Zhu, J C Latombe. Pipe routing = path planning (with many constraints). Proceedings of the 1991 IEEE International Conference on Robotics and Automation, Sacramento, California, 1991: 1940-1947.

5. A B Conru. A genetic approach to the cable harness routing problem. IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, 1994.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3