New Start-up Method for a Closed-Cycle Compression System with Gas Bearings and Its Characteristics

Author:

Lian Huaqi,Wu Hong,Li YulongORCID,Rong Chengjun

Abstract

AbstractGas bearings, which have the advantages of low frictional resistance and power loss, high rotational speed and high temperature operation, and long life, are more suitable than are traditional liquid lubricated bearings because of their high precision, high rotational speed, and special condition support. However, the problem of starting a closed-cycle compression system with gas bearings still needs to be solved for practical application. Thus, a new start-up method for a closed-cycle compression system with aerostatic gas bearings is proposed in this paper. Further, this paper presents a numerical simulation and experimental investigation of the method’s feasibility and characteristics during the start-up process when the gas tank’s initial pressure is fixed. The results show that the gas tank volume is approximately directly proportional to the start-up time allowable, and a gas tank volume sufficiently small, which not only ensures the feasibility of start-up, but also affects other components only slightly, can be obtained. A perfect combination of radial and axial loads also can be achieved to make the start-up time allowable as long as possible. R134a is a better choice for the working medium than is air, as the start-up time allowable is longer, which leads to a smaller gas tank. This research proposes a new start-up method for a closed-cycle compression system with aerostatic gas bearings which has sufficient load capacity to support system during the start-up method.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3