Abstract
AbstractIn situ scanning transmission electron microscopy is being developed for numerous applications in the study of nucleation and growth under electrochemical driving forces. For this type of experiment, one of the key parameters is to identify when nucleation initiates. Typically, the process of identifying the moment that crystals begin to form is a manual process requiring the user to perform an observation and respond accordingly (adjust focus, magnification, translate the stage, etc.). However, as the speed of the cameras being used to perform these observations increases, the ability of a user to “catch” the important initial stage of nucleation decreases (there is more information that is available in the first few milliseconds of the process). Here, we show that video shot boundary detection can automatically detect frames where a change in the image occurs. We show that this method can be applied to quickly and accurately identify points of change during crystal growth. This technique allows for automated segmentation of a digital stream for further analysis and the assignment of arbitrary time stamps for the initiation of processes that are independent of the user’s ability to observe and react.
Funder
U.S. Department of Energy
Publisher
Springer Science and Business Media LLC
Subject
Spectroscopy,Radiology, Nuclear Medicine and imaging,Chemical Engineering (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献