Abstract
AbstractA study has been completed examining design issues concerning the interpretation of and dissemination of multimodal medical imaging data sets to diverse audiences. To create a model data set mouse fibrosarcoma tissue was visualised via magnetic resonance imaging (MRI), Matrix-Assisted Laser Desorption/Ionisation-Mass Spectrometry (MALDI-MSI) and histology. MRI images were acquired using the 0.25T Esaote GScan; MALDI images were acquired using a Q-Star Pulsar I mass spectrometer. Histological staining of the same tissue sections used for MALDI-MSI was then carried out. Areas assigned to hemosiderin deposits due to haemorrhaging could be visualised via MRI. In the MALDI-MSI data obtained the distribution sphingomyelin species could be used to identify regions of viable tumour. Mathematical ‘up sampling’ using hierarchical clustering-based segmentation provided a sophisticated image enhancement tool for both MRI and MALDI-MS and assisted in the correlation of images.
Funder
Imagine Project, Sheffield Hallam University
Publisher
Springer Science and Business Media LLC
Subject
Spectroscopy,Radiology, Nuclear Medicine and imaging,Chemical Engineering (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献