Simplified dosimetry for kidneys and tumors in 177Lu-labeled peptide receptor radionuclide therapy

Author:

Ardenfors OscarORCID,Nilsson Joachim N.ORCID,Thor DanielORCID,Hindorf Cecilia

Abstract

Abstract Purpose To evaluate if satisfactory post-therapeutic image-based dosimetry can be achieved for Lu-177-DOTATATE treatments using a reduced number of image acquisitions to improve patient comfort and reduce economical costs. Methods 39 patients who underwent 147 treatment cycles of Lu-177-DOTATATE for neuroendocrine tumors were included in the study. A total of 291 and 284 absorbed doses were calculated to kidneys and tumors, respectively. Single-point dosimetry was performed using one SPECT/CT image acquired at 1 d or 7 d post-treatment using a fixed effective half-life (Teff) or using a patient-specific Teff determined for the initial cycle. Also, dose-per-activity values, (D/A)1, were determined from the first cycle and used to calculate doses for subsequent cycles. All absorbed doses were evaluated against “true” doses calculated using both the 1 d and 7 d images. The relation between tumor grade and absorbed doses was also investigated. All dosimetry was performed on SPECT images. Results Absorbed doses to kidneys were most accurate when single-point dosimetry was performed using 1 d images with median ratios in relation to “true” doses in total dose of 1.00 (IQR: 0.97–1.03) when using fixed Teff and 1.01 (IQR: 0.98–1.04) when using Teff from the initial cycle. Calculations based on the 7 d image were most accurate for tumors with corresponding ratios in total absorbed dose of 0.98 (IQR: 0.96–1.00) and 1.00 (IQR: 0.99–1.01) when using a fixed Teff or Teff from the first cycle, respectively. The (D/A)1 approach performed worse, as 2 of 77 total absorbed doses to the kidneys deviated with > 30%, and tumor-absorbed doses were increasingly overestimated with every cycle. Absorbed doses, Teff and 1 d uptake were higher for G1 tumors than G2 tumors. Conclusion Dosimetry can be performed with satisfactory accuracy when using single SPECT/CT images acquired at 1 d for kidneys or at 7 d for tumors.

Funder

Karolinska Institute

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Biomedical Engineering,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3