Quantification of biochemical PSA dynamics after radioligand therapy with [177Lu]Lu-PSMA-I&T using a population pharmacokinetic/pharmacodynamic model

Author:

Siebinga HinkeORCID,de Wit-van der Veen Berlinda J.,de Vries-Huizing Daphne M. V.,Vogel Wouter V.,Hendrikx Jeroen J. M. A.,Huitema Alwin D. R.

Abstract

Abstract Background There is an unmet need for prediction of treatment outcome or patient selection for [177Lu]Lu-PSMA therapy in patients with metastatic castration-resistant prostate cancer (mCRPC). Quantification of the tumor exposure–response relationship is pivotal for further treatment optimization. Therefore, a population pharmacokinetic (PK) model was developed for [177Lu]Lu-PSMA-I&T using SPECT/CT data and, subsequently, related to prostate-specific antigen (PSA) dynamics after therapy in patients with mCRPC using a pharmacokinetic/pharmacodynamic (PKPD) modelling approach. Methods A population PK model was developed using quantitative SPECT/CT data (406 scans) of 76 patients who received multiple cycles [177Lu]Lu-PSMA-I&T (± 7.4 GBq with either two- or six-week interval). The PK model consisted of five compartments; central, salivary glands, kidneys, tumors and combined remaining tissues. Covariates (tumor volume, renal function and cycle number) were tested to explain inter-individual variability on uptake into organs and tumors. The final PK model was expanded with a PD compartment (sequential fitting approach) representing PSA dynamics during and after treatment. To explore the presence of a exposure–response relationship, individually estimated [177Lu]Lu-PSMA-I&T tumor concentrations were related to PSA changes over time. Results The population PK model adequately described observed data in all compartments (based on visual inspection of goodness-of-fit plots) with adequate precision of parameters estimates (< 36.1% relative standard error (RSE)). A significant declining uptake in tumors (k14) during later cycles was identified (uptake decreased to 73%, 50% and 44% in cycle 2, 3 and 4–7, respectively, compared to cycle 1). Tumor growth (defined by PSA increase) was described with an exponential growth rate (0.000408 h−1 (14.2% RSE)). Therapy-induced PSA decrease was related to estimated tumor concentrations (MBq/L) using both a direct and delayed drug effect. The final model adequately captured individual PSA concentrations after treatment (based on goodness-of-fit plots). Simulation based on the final PKPD model showed no evident differences in response for the two different dosing regimens currently used. Conclusions Our population PK model accurately described observed [177Lu]Lu-PSMA-I&T uptake in salivary glands, kidneys and tumors and revealed a clear declining tumor uptake over treatment cycles. The PKPD model adequately captured individual PSA observations and identified population response rates for the two dosing regimens. Hence, a PKPD modelling approach can guide prediction of treatment response and thus identify patients in whom radioligand therapy is likely to fail.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3