Deep learning approximation of attenuation maps for myocardial perfusion SPECT with an IQ$$\varvec{\cdot {}}$$SPECT collimator

Author:

Huxohl TaminoORCID,Patel Gopesh,Zabel Reinhard,Burchert Wolfgang

Abstract

Abstract Background The use of CT images for attenuation correction of myocardial perfusion imaging with single photon emission computer tomography (SPECT) increases diagnostic confidence. However, acquiring a CT image registered to a SPECT image is often not possible because most scanners are SPECT-only. It is possible to approximate attenuation maps using deep learning, but this has not yet been shown to work for a SPECT scanner with an IQ$$\varvec{\cdot {}}$$ · SPECT collimator. This study investigates whether it is possible to approximate attenuation maps from non-attenuation-corrected (nAC) reconstructions acquired with a SPECT scanner equipped with an IQ$$\varvec{\cdot {}}$$ · SPECT collimator. Methods Attenuation maps and reconstructions were acquired retrospectively for 150 studies. A U–Net was trained to predict attenuation maps from nAC reconstructions using the conditional generative adversarial network framework. Predicted attenuation maps are compared to real attenuation maps using the normalized mean absolute error (NMAE). Attenuation-corrected reconstructions were computed, and the resulting polar maps were compared by pixel and by average perfusion per segment using the absolute percent error (APE). The training and evaluation code is available at https://gitlab.ub.uni-bielefeld.de/thuxohl/mu-map. Results Predicted attenuation maps are similar to real attenuation maps, achieving an NMAE of 0.020±0.007. The same is true for polar maps generated from reconstructions with predicted attenuation maps compared to CT-based attenuation maps. Their pixel-wise absolute distance is 3.095±3.199, and the segment-wise APE is 1.155±0.769. Conclusions It is feasible to approximate attenuation maps from nAC reconstructions acquired by a scanner with an IQ$$\varvec{\cdot {}}$$ · SPECT collimator using deep learning.

Funder

Krankenhausbetriebsgesellschaft Bad Oeynhausen mbH

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Biomedical Engineering,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3