Abstract
Abstract
Background
Regular and precise inspection of the realization of the local nuclear medicine standard operation procedures (SOPs) is very complex and time-consuming, especially when large amount of patient data is obtained from a wide scale of different scan procedures on a daily basis. DICOM metadata comprise a complete set of data related to the patient and the imaging procedure, and consequently all information necessary to evaluate the compliance with the actual SOP.
Methods
Q-Bot, an automatic DICOM metadata monitoring tool which is capable to verify SOP conformities, was tested for 11 months at two nuclear medicine departments. Relevant parameters, such as patient ID, patient mass and height, injected activity, and uptake time, were investigated in the case of adult 18F-FDG whole-body PET/CT and 99mTc-MDP gamma camera bone scans on a daily basis. Q-Bot automatically inspected the actual SOP compliance of these relevant DICOM parameters. Q-Bot graphical user interface (GUI) provided a summary of the outliers in a table format to be investigated by a dedicated technologist. In addition, information related to the error handling was also collected for retrospective analysis of long-term tendencies.
Results
In total, 6702 PET/CT and 2502 gamma camera scans were inspected, from which 8581 were confirmed as valid patient study without errors. Discrepancies related to the lack of a parameter, not appropriate format, or improper scan procedures were found in 623 cases, and 156 out of these were corrected before the medical reading and reporting. SOP non-conformities explored with Q-Bot were found to be non-correctable in 467 cases. Systematic errors to our practice turned out to be the manual radiopharmaceutical injection, the allowance to use both SI and non-SI units, and the clear definition of decimal point symbol to use.
Conclusion
The daily evaluation of Q-Bot results provided early detection of errors and consequently ensured the minimization of error propagation. Integration of a QM software that inspects protocol compliance at a nuclear medicine department provides significant support to detect non-conformities for technologists, and much higher confidence in image quality for physicians.
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Biomedical Engineering,Radiation
Reference32 articles.
1. ISO (International Organization for Standard). ISO 13485: 2016 medical cdevices - quality management system - requirements for reguatory purpose, vol. 2016; 2016. p. 6711060670.
2. Boellaard R, Delgado-Bolton R, Oyen WJG, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nuclear Med Mol Imaging. 2015;42:328–54 Springer Berlin Heidelberg.
3. International Atomic Energy Agency. IAEA Health Human Series No. 1: Quality Assurance for PET and PET/CT Systems. IAEA Hum Health. 2009;1(1) Available from: http://insights.ovid.com/crossref?an=00004032-201212000-00028.
4. Van den Wyngaert T, Strobel K, Kampen WU, Kuwert T, van der Bruggen W, Mohan HK, et al. The EANM practice guidelines for bone scintigraphy. Eur J Nucl Med Mol Imaging 2016;43(9):1723–1738. Available from: https://doi.org/10.1007/s00259-016-3415-4
5. Kaalep A, Sera T, Oyen W, Krause BJ, Chiti A. EANM / EARL FDG-PET / CT accreditation - summary results from the first 200 accredited imaging systems. Eur J Nucl Med Mol Imaging. 2018;45:412–22.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献