Phantom-based image quality assessment of clinical 18F-FDG protocols in digital PET/CT and comparison to conventional PMT-based PET/CT

Author:

Gnesin Silvano,Kieffer Christine,Zeimpekis Konstantinos,Papazyan Jean-Pierre,Guignard Renaud,Prior John O.ORCID,Verdun Francis R.,Lima Thiago V. M.

Abstract

Abstract Background We assessed and compared image quality obtained with clinical 18F-FDG whole-body oncologic PET protocols used in three different, state-of-the-art digital PET/CT and two conventional PMT-based PET/CT devices. Our goal was to evaluate an  improved trade-off between administered activity (patient dose exposure/signal-to-noise ratio) and acquisition time (patient comfort) while preserving diagnostic information achievable with the recently introduced digital detector technology compared to previous analogue PET technology. Methods We performed list-mode (LM) PET acquisitions using a NEMA/IEC NU2 phantom, with activity concentrations of 5 kBq/mL and 25 kBq/mL for the background (9.5 L) and sphere inserts, respectively. For each device, reconstructions were obtained varying the image statistics (10, 30, 60, 90, 120, 180, and 300 s from LM data) and the number of iterations (range 1 to 10) in addition to the employed local clinical protocol setup. We measured for each reconstructed dataset: the quantitative cross-calibration, the image noise on the uniform background assessed by the coefficient of variation (COV), and the recovery coefficients (RCs) evaluated in the hot spheres. Additionally, we compared the characteristic time-activity-product (TAP) that is the product of scan time per bed position × mass-activity administered (in min·MBq/kg) across datasets. Results Good system cross-calibration was obtained for all tested datasets with < 6% deviation from the expected value was observed. For all clinical protocol settings, image noise was compatible with clinical interpretation (COV < 15%). Digital PET showed an improved background signal-to-noise ratio as compared to conventional PMT-based PET. RCs were comparable between digital and PMT-based PET datasets. Compared to PMT-based PET, digital systems provided comparable image quality with lower TAP (from ~ 40% less and up to 70% less). Conclusions This study compared the achievable clinical image quality in three state-of-the-art digital PET/CT devices (from different vendors) as well as in two conventional PMT-based PET. Reported results show that a comparable image quality is achievable with a TAP reduction of ~ 40% in digital PET. This could lead to a significant reduction of the administered mass-activity and/or scan time with direct benefits in terms of dose exposure and patient comfort.

Funder

Centre Hospitalier Universitaire Vaudois

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging,Instrumentation,Biomedical Engineering,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3