Abstract
Abstract
Background
SimPET-L and SimPET-XL have recently been introduced with increased transaxial fields of view (FOV) compared with their predecessors (SimPET™ and SimPET-X), enabling whole-body positron emission tomography (PET) imaging of rats. We conducted performance evaluations of SimPET-L and SimPET-XL and rat-body imaging with SimPET-XL to demonstrate the benefits of increased axial and transaxial FOVs.
Procedures
The detector blocks in SimPET-L and SimPET-XL consist of two 4 × 4 silicon photomultiplier arrays coupled with 20 × 9 array lutetium oxyorthosilicate crystals. SimPET-L and SimPET-XL have an inner diameter (bore size) of 7.6 cm, and they are composed of 40 and 80 detector blocks yielding axial lengths of 5.5 and 11 cm, respectively. Each system was evaluated according to the National Electrical Manufacturers Association NU4-2008 protocol. Rat imaging studies, such as 18F-NaF and 18F-FDG PET, were performed using SimPET-XL.
Results
The radial resolutions at the axial center measured using the filtered back projection, 3D ordered-subset expectation maximization (OSEM), and 3D OSEM with point spread functions correction were 1.7, 0.82, and 0.82 mm FWHM in SimPET-L and 1.7, 0.91, and 0.91 mm FWHM in SimPET-XL, respectively. The peak sensitivities of SimPET-L and SimPET-XL were 6.30% and 10.4% for an energy window of 100–900 keV and 4.44% and 7.25% for a window of 250–750 keV, respectively. The peak noise equivalent count rate with an energy window of 250–750 keV was 249 kcps at 44.9 MBq for SimPET-L and 349 kcps at 31.3 MBq for SimPET-XL. In SimPET-L, the uniformity was 4.43%, and the spill-over ratios in air- and water-filled chambers were 5.54% and 4.10%, respectively. In SimPET-XL, the uniformity was 3.89%, and the spill-over ratio in the air- and water-filled chambers were 3.56% and 3.60%. Moreover, SimPET-XL provided high-quality images of rats.
Conclusion
SimPET-L and SimPET-XL show adequate performance compared with other SimPET systems. In addition, their large transaxial and long axial FOVs provide imaging capability for rats with high image quality.
Funder
Korea Medical Device Development Fund
Korea Brain Research Institute
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Biomedical Engineering,Radiation
Reference19 articles.
1. Miyaoka RS, Lehnert AL. Small animal PET: a review of what we have done and where we are going. Phys Med Biol. 2020. https://doi.org/10.1088/1361-6560/AB8F71.
2. Dagallier C, Avry F, Touchefeu Y, Buron F, Routier S, Chérel M, Arlicot N. Development of PET radioligands targeting COX-2 for colorectal cancer staging, a review of in vitro and preclinical imaging studies. Front Med (Lausanne). 2021;8:761.
3. Keuenhof K, Heimel P, Zopf LM, et al. Multimodality imaging beyond CLEM: showcases of combined in-vivo preclinical imaging and ex-vivo microscopy to detect murine mural vascular lesions. Methods Cell Biol. 2021;162:389–415.
4. Hutchins GD, Miller MA, Soon VC, Receveur T. Small animal PET imaging. ILAR J. 2008;49:54–65.
5. Tai YC, Chatziioannou AF, Yang Y, Silverman RW, Meadors K, Siegel S, Newport DF, Stickel JR, Cherry SR. MicroPET II: design, development and initial performance of an improved microPET scanner for small-animal imaging. Phys Med Biol. 2003;48:1519–37.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献