Abstract
Abstract
Background
Whole-body bone scintigraphy is a clinically useful non-invasive and highly sensitive imaging method enabling detection of metabolic changes at an early stage of disease, often earlier than with conventional radiologic procedures. Bone scintigraphy is one of the most common nuclear medicine methods used worldwide. Therefore, it is important that the examination is implemented and performed in an optimal manner giving the patient added value in the subsequent care process. The aim of this national multicentre survey was to investigate Swedish nuclear medicine departments compliance with European practice guidelines for bone scintigraphy. In addition, the effect of image acquisition parameters on the ability to detect metabolic lesions was investigated.
Methods
Twenty-five hospital sites participated in the study. The SIMIND Monte Carlo (MC) simulation and the XCAT phantom were used to simulate ten fictive patient cases with increased metabolic activity distributed at ten different locations in the skeleton. The intensity of the metabolic activity was set into six different levels. Individual simulations were performed for each site, corresponding to their specific camera system and acquisition parameters. Simulated image data sets were then sent to each site and were visually evaluated in terms of if there was one or several locations with increased metabolic activity relative to normal activity.
Result
There is a high compliance in Sweden with the EANM guidelines regarding image acquisition parameters for whole-body bone scintigraphy. However, up to 40% of the participating sites acquire lower count density in the images than recommended. Despite this, the image quality was adequate to maintain a stable detection level. None of the hospital sites or individual responders deviated according to the statistical analysis. There is a need for at least 2.5 times metabolic activity compared to normal for a lesion to be detected.
Conclusion
The imaging process is well harmonized throughout the country and there is a high compliance with the EANM guidelines. There is a need for at least 2.5 times the normal metabolic activity for a lesion to be detected as abnormal.
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Biomedical Engineering,Radiation
Reference20 articles.
1. Even-Sapir E. Imaging of malignant bone involvement by morphologic, scintigraphic, and hybrid modalities. J Nucl Med. 2005;46(8):1356–67.
2. Swedish Radiation Safety Authority. https://www.stralsakerhetsmyndigheten.se/en/. Accessed 29 July 2021.
3. Equalis AB. https://www.equalis.se/en/. Accessed 29 July 2021.
4. Van den Wyngaert T, Strobel K, Kampen WU, Kuwert T, van der Bruggen W, Mohan HK, et al. The EANM practice guidelines for bone scintigraphy. Eur J Nucl Med Mol Imaging. 2016;43(9):1723–38.
5. Brolin G, Edenbrandt L, Granerus G, Olsson A, Afzelius D, Gustafsson A, et al. The accuracy of quantitative parameters in (99m) Tc-MAG3 dynamic renography: a national audit based on virtual image data. Clin Physiol Funct Imaging. 2016;36(2):146–54.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献