Multi-modal co-learning with attention mechanism for head and neck tumor segmentation on 18FDG PET-CT

Author:

Cho Min Jeong,Hwang Donghwi,Yie Si Young,Lee Jae SungORCID

Abstract

Abstract Purpose Effective radiation therapy requires accurate segmentation of head and neck cancer, one of the most common types of cancer. With the advancement of deep learning, people have come up with various methods that use positron emission tomography-computed tomography to get complementary information. However, these approaches are computationally expensive because of the separation of feature extraction and fusion functions and do not make use of the high sensitivity of PET. We propose a new deep learning-based approach to alleviate these challenges. Methods We proposed a tumor region attention module that fully exploits the high sensitivity of PET and designed a network that learns the correlation between the PET and CT features using squeeze-and-excitation normalization (SE Norm) without separating the feature extraction and fusion functions. In addition, we introduce multi-scale context fusion, which exploits contextual information from different scales. Results The HECKTOR challenge 2021 dataset was used for training and testing. The proposed model outperformed the state-of-the-art models for medical image segmentation; in particular, the dice similarity coefficient increased by 8.78% compared to U-net. Conclusion The proposed network segmented the complex shape of the tumor better than the state-of-the-art medical image segmentation methods, accurately distinguishing between tumor and non-tumor regions.

Funder

Korea Medical Device Development Fund

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3