Multivariate analysis of PET pharmacokinetic parameters improves inferential efficiency

Author:

Matheson Granville J.ORCID,Ogden R. Todd

Abstract

Abstract Purpose In positron emission tomography quantification, multiple pharmacokinetic parameters are typically estimated from each time activity curve. Conventionally all but the parameter of interest are discarded before performing subsequent statistical analysis. However, we assert that these discarded parameters also contain relevant information which can be exploited to improve the precision and power of statistical analyses on the parameter of interest. Properly taking this into account can thereby draw more informative conclusions without collecting more data. Methods By applying a hierarchical multifactor multivariate Bayesian approach, all estimated parameters from all regions can be analysed at once. We refer to this method as Parameters undergoing Multivariate Bayesian Analysis (PuMBA). We simulated patient–control studies with different radioligands, varying sample sizes and measurement error to explore its performance, comparing the precision, statistical power, false positive rate and bias of estimated group differences relative to univariate analysis methods. Results We show that PuMBA improves the statistical power for all examined applications relative to univariate methods without increasing the false positive rate. PuMBA improves the precision of effect size estimation, and reduces the variation of these estimates between simulated samples. Furthermore, we show that PuMBA yields performance improvements even in the presence of substantial measurement error. Remarkably, owing to its ability to leverage information shared between pharmacokinetic parameters, PuMBA even shows greater power than conventional univariate analysis of the true binding values from which the parameters were simulated. Across all applications, PuMBA exhibited a small degree of bias in the estimated outcomes; however, this was small relative to the variation in estimated outcomes between simulated datasets. Conclusion PuMBA improves the precision and power of statistical analysis of PET data without requiring the collection of additional measurements. This makes it possible to study new research questions in both new and previously collected data. PuMBA therefore holds great promise for the field of PET imaging.

Funder

NIH Blueprint for Neuroscience Research

Hjärnfonden

Vetenskapsrådet

Karolinska Institute

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Biomedical Engineering,Radiation

Reference39 articles.

1. Bates D, Mächler M, Bolker B, et al. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67(1):1–48. https://doi.org/10.18637/jss.v067.i01.

2. Wiley series in probability and statistics;DA Belsley,1991

3. Betancourt M. Hierarchical modeling. 2020a; Retrieved from https://github.com/betanalpha/knitr_case_studies, commit 27c1d260e9ceca710465dc3b02f59f59b729ca43.

4. Betancourt M. Towards a principled bayesian workflow (RStan). 2020b; Retrieved from https://github.com/betanalpha/knitr_case_studies, commit aeab31509b8e37ff05b0828f87a3018b1799b401.

5. Betancourt M. Factor modeling. 2021; Retrieved from https://github.com/betanalpha/ knitr_case_studies, commit 6e4566309163ee79f8b7c907e2efce969a96bc54.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3