Kinetic 18F-FDG PET/CT imaging of hepatocellular carcinoma: a dual input four-compartment model

Author:

Wang Tao,Deng Yinglei,Wang Sidan,He Jianfeng,Wang ShaoboORCID

Abstract

Abstract Background The endoplasmic reticulum plays an important role in glucose metabolism and has not been explored in the kinetic estimation of hepatocellular carcinoma (HCC) via 18F-fluoro-2-deoxy-d-glucose PET/CT. Methods A dual-input four-compartment (4C) model, regarding endoplasmic reticulum was preliminarily used for kinetic estimation to differentiate 28 tumours from background liver tissue from 24 patients with HCC. Moreover, parameter images of the 4C model were generated from one patient with negative findings on conventional metabolic PET/CT. Results Compared to the dual-input three-compartment (3C) model, the 4C model has better fitting quality, a close transport rate constant (K1) and a dephosphorylation rate constant (k6/k4), and a different removal rate constant (k2) and phosphorylation rate constant (k3) in HCC and background liver tissue. The K1, k2, k3, and hepatic arterial perfusion index (HPI) from the 4C model and k3, HPI, and volume fraction of blood (Vb) from the 3C model were significantly different between HCC and background liver tissues (all P < 0.05). Meanwhile, the 4C model yielded additional kinetic parameters for differentiating HCC. The diagnostic performance of the top ten genes from the most to least common was HPI(4C), Vb(3C), HPI(3C), SUVmax, k5(4C), k3(3C), k2(4C), v(4C), K1(4C) and Vb(4C). Moreover, a patient who showed negative findings on conventional metabolic PET/CT had positive parameter images in the 4C model. Conclusions The 4C model with the endoplasmic reticulum performed better than the 3C model and produced additional useful parameters in kinetic estimation for differentiating HCC from background liver tissue.

Funder

National Natural Science Foundation of China

Yunnan Key Laboratory of Smart City in Cyberspace Security

the Basic Research on Application of Joint Special Funding of Science and Technology Department of Yunnan Province-Kunming Medical University

the High-level Talent Project of Health in Yunnan Province

the Ten Thousand People Plan in Yunnan Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3