Small lesion depiction and quantification accuracy of oncological 18F-FDG PET/CT with small voxel and Bayesian penalized likelihood reconstruction

Author:

Xu Lei,Li Ru-Shuai,Wu Run-ZeORCID,Yang Rui,You Qin-Qin,Yao Xiao-Chen,Xie Hui-Fang,Lv Yang,Dong Yun,Wang Feng,Meng Qing-Le

Abstract

Abstract Background To investigate the influence of small voxel Bayesian penalized likelihood (SVB) reconstruction on small lesion detection compared to ordered subset expectation maximization (OSEM) reconstruction using a clinical trials network (CTN) chest phantom and the patients with 18F-FDG-avid small lung tumors, and determine the optimal penalty factor for the lesion depiction and quantification. Methods The CTN phantom was filled with 18F solution with a sphere-to-background ratio of 3.81:1. Twenty-four patients with 18F-FDG-avid lung lesions (diameter < 2 cm) were enrolled. Six groups of PET images were reconstructed: routine voxel OSEM (RVOSEM), small voxel OSEM (SVOSEM), and SVB reconstructions with four penalty factors: 0.6, 0.8, 0.9, and 1.0 (SVB0.6, SVB0.8, SVB0.9, and SVB1.0). The routine and small voxel sizes are 4 × 4 × 4 and 2 × 2 × 2 mm3. The recovery coefficient (RC) was calculated by dividing the measured activity by the injected activity of the hot spheres in the phantom study. The SUVmax, target-to-liver ratio (TLR), contrast-to-noise ratio (CNR), the volume of the lesions, and the image noise of the liver were measured and calculated in the patient study. Visual image quality of the patient image was scored by two radiologists using a 5-point scale. Results In the phantom study, SVB0.6, SVB0.8, and SVB0.9 achieved higher RCs than SVOSEM. The RC was higher in SVOSEM than RVOSEM and SVB1.0. In the patient study, the SUVmax, TLR, and visual image quality scores of SVB0.6 to SVB0.9 were higher than those of RVOSEM, while the image noise of SVB0.8 to SVB1.0 was equivalent to or lower than that of RVOSEM. All SVB groups had higher CNRs than RVOSEM, but there was no difference between RVOSEM and SVOSEM. The lesion volumes derived from SVB0.6 to SVB0.9 were accurate, but over-estimated by RVOSEM, SVOSEM, and SVB1.0, using the CT measurement as the standard reference. Conclusions The SVB reconstruction improved lesion contrast, TLR, CNR, and volumetric quantification accuracy for small lesions compared to RVOSEM reconstruction without image noise degradation or the need of longer emission time. A penalty factor of 0.8–0.9 was optimal for SVB reconstruction for the small tumor detection with 18F-FDG PET/CT.

Funder

National Natural Science Foundation of China

Jiangsu Provincial Frontier Grant

Nanjing Municipal Health Science and Technology Development Fund

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Biomedical Engineering,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3