Gamma detector dead time correction using Lambert W function

Author:

Heemskerk Jan W. T.,Defrise Michel

Abstract

Abstract Background For therapeutic applications of several isotopes (e.g., 131I, 153Sm, 177Lu) in nuclear medicine, the high activities typically applied require accurate dead time correction in early time point imaging. We present a novel, straightforward dead time correction method using the Lambert W function, which is in principle exact for the paralyzable detector model with a single parameter τ (i.e., dead time). Results As a proof of concept, the method is validated with a simple model: a commonly used isotope, 99mTc, with a single photopeak. We measured count rates of a gamma camera both intrinsically and extrinsically (i.e., with collimators) with point sources in air and in a scatter phantom (extrinsic only). τ was estimated for both open window (τOW) and a 99mTc photopeak window (τTc), using a “graphical” method for fitting the count rate of decaying sources. These values for τ were subsequently used for dead time correction. τ varied significantly between the different geometries for both energy windows, but τOW was more reproducible than τTc, particularly for the scatter phantom measurements. τOW measured from the phantom measurements was approximately 30% lower than τOW from the intrinsic measurement but corresponded within 15% with the extrinsic point source measurements. Accordingly, using the intrinsic τOW led to an overcorrection of 8% at high count rates; τOW from the extrinsic point source measurements corrected the phantom measurement to within 2%. However, significant differences were observed between τTc values. All measured τTc values underestimated dead time losses in a second independent phantom measurement, with even τTc from the first phantom measurement underestimating activity with 5–10% at the highest count rates. Based on measurements of the effect of energy window settings and geometry, we tentatively attribute the added dead time losses to pulse pile-up. Conclusions Analytic dead time correction based on the Lambert W function is accurate for the range in which gamma detectors behave as paralyzable systems. However, further investigation indicated measured τ values to be variable with geometry as well as window fraction. We propose that dead time correction should be based on the open window value, τOW, corrected for window fraction.

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging,Instrumentation,Biomedical Engineering,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3