Evaluation of Iodine-123 and Iodine-131 SPECT activity quantification: a Monte Carlo study

Author:

Morphis MichaellaORCID,van Staden Johan A.,du Raan Hanlie,Ljungberg Michael

Abstract

Abstract Purpose The quantitative accuracy of Nuclear Medicine images, acquired for both planar and SPECT studies, is influenced by the isotope-collimator combination as well as image corrections incorporated in the iterative reconstruction process. These factors can be investigated and optimised using Monte Carlo simulations. This study aimed to evaluate SPECT quantification accuracy for 123I with both the low-energy high resolution (LEHR) and medium-energy (ME) collimators and 131I with the high-energy (HE) collimator. Methods Simulated SPECT projection images were reconstructed using the OS-EM iterative algorithm, which was optimised for the number of updates, with appropriate corrections for scatter, attenuation and collimator detector response (CDR), including septal scatter and penetration compensation. An appropriate calibration factor (CF) was determined from four different source geometries (activity-filled: water-filled cylindrical phantom, sphere in water-filled (cold) cylindrical phantom, sphere in air and point-like source), investigated with different volume of interest (VOI) diameters. Recovery curves were constructed from recovery coefficients to correct for partial volume effects (PVEs). The quantitative method was evaluated for spheres in voxel-based digital cylindrical and patient phantoms. Results The optimal number of OS-EM updates was 60 for all isotope-collimator combinations. The CFpoint with a VOI diameter equal to the physical size plus a 3.0-cm margin was selected, for all isotope-collimator geometries. The spheres’ quantification errors in the voxel-based digital cylindrical and patient phantoms were less than 3.2% and 5.4%, respectively, for all isotope-collimator combinations. Conclusion The study showed that quantification errors of less than 6.0% could be attained, for all isotope-collimator combinations, if corrections for; scatter, attenuation, CDR (including septal scatter and penetration) and PVEs are performed. 123I LEHR and 123I ME quantification accuracies compared well when appropriate corrections for septal scatter and penetration were applied. This can be useful in departments that perform 123I studies and may not have access to ME collimators.

Funder

NRF-STINT

South African Medical Research Council

NTeMBI

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Biomedical Engineering,Radiation

Reference62 articles.

1. Frangos S, Buscombe JR. Why should we be concerned about a “g”? Eur J Nucl Med Mol Imaging. 2019;46:519. https://doi.org/10.1007/s00259-018-4204-z.

2. Yordanova A, Eppard E, Kürpig S, Bundschuh RA, Schönberger S, Gonzalez-Carmona M, et al. Theranostics in nuclear medicine practice. Onco Targets Ther. 2017;10:4821–8. https://doi.org/10.2147/ott.s140671.

3. Ljungberg M, Gleisner K. Hybrid imaging for patient-specific dosimetry in radionuclide therapy. Diagnostics. 2015;5(3):296–317. https://doi.org/10.3390/diagnostics5030296.

4. Wieland DM, Wu J, Brown LE, Mangner TJ, Swanson DP. Radiolabeled adrenergic neuron-blocking agents : adrenomedullary imaging with [131I ] iodobenzylguanidine. J Nucl Med. 1980;21(4):349–53.

5. Sjögreen K, Ljungberg M, Strand S, Library PM. An activity quantification method based on registration of CT and whole-body scintillation camera images, with application to I131. J Nucl Med. 2002;43(7):972–82.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3