PET imaging and quantification of small animals using a clinical SiPM-based camera

Author:

Desmonts CédricORCID,Lasnon Charline,Jaudet Cyril,Aide Nicolas

Abstract

Abstract Background Small-animal PET imaging is an important tool in preclinical oncology. This study evaluated the ability of a clinical SiPM-PET camera to image several rats simultaneously and to perform quantification data analysis. Methods Intrinsic spatial resolution was measured using 18F line sources, and image quality was assessed using a NEMA NU 4-2018 phantom. Quantification was evaluated using a fillable micro-hollow sphere phantom containing 4 spheres of different sizes (ranging from 3.95 to 7.86 mm). Recovery coefficients were computed for the maximum (Amax) and the mean (A50) pixel values measured on a 50% isocontour drawn on each sphere. Measurements were performed first with the phantom placed in the centre of the field of view and then in the off-centre position with the presence of three scattering sources to simulate the acquisition of four animals simultaneously. Quantification accuracy was finally validated using four 3D-printed phantoms mimicking rats with four subcutaneous tumours each. All experiments were performed for both 18F and 68Ga radionuclides. Results Radial spatial resolutions measured using the PSF reconstruction algorithm were 1.80 mm and 1.78 mm for centred and off-centred acquisitions, respectively. Spill-overs in air and water and uniformity computed with the NEMA phantom centred in the FOV were 0.05, 0.1 and 5.55% for 18F and 0.08, 0.12 and 2.81% for 68Ga, respectively. Recovery coefficients calculated with the 18F-filled micro-hollow sphere phantom for each sphere varied from 0.51 to 1.43 for Amax and from 0.40 to 1.01 for A50. These values decreased from 0.28 to 0.92 for Amax and from 0.22 to 0.66 for A50 for 68 Ga acquisition. The results were not significantly different when imaging phantoms in the off-centre position with 3 scattering sources. Measurements performed with the four 3D-printed phantoms showed a good correlation between theoretical and measured activity in simulated tumours, with r2 values of 0.99 and 0.97 obtained for 18F and 68Ga, respectively. Conclusion We found that the clinical SiPM-based PET system was close to that obtained with a dedicated small-animal PET device. This study showed the ability of such a system to image four rats simultaneously and to perform quantification analysis for radionuclides commonly used in oncology.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Biomedical Engineering,Radiation

Reference35 articles.

1. Seemann MD. Human PET/CT scanners: feasibility for oncological in vivo imaging in mice. Eur J Med Res. 2004;9:468–72.

2. Wolf G, Abolmaali N. Imaging tumour-bearing animals using clinical scanners. Int J Radiat Biol. 2009;85:752–62.

3. Tatsumi M, Nakamoto Y, Traughber B, Marshall LT, Geschwind J-FH, Wahl RL. Initial experience in small animal tumor imaging with a clinical positron emission tomography/computed tomography scanner using 2-[F-18]fluoro-2-deoxy-D-glucose. Cancer Res. 2003;63:6252–7.

4. González Trotter DE, Manjeshwar RM, Doss M, Shaller C, Robinson MK, Tandon R, et al. Quantitation of small-animal (124)I activity distributions using a clinical PET/CT scanner. J Nucl Med. 2004;45:1237–44.

5. Helisch A, Thews O, Buchholz H-G, Tillmanns J, Kronfeld A, Schreiber LM, et al. Small animal tumour imaging with MRI and the ECAT EXACT scanner: application of partial volume correction and comparison with microPET data. Nucl Med Commun. 2010;31:294–300.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3