Comparison of deep learning-based denoising methods in cardiac SPECT

Author:

Sohlberg Antti,Kangasmaa Tuija,Constable Chris,Tikkakoski Antti

Abstract

Abstract Background Myocardial perfusion SPECT (MPS) images often suffer from artefacts caused by low-count statistics. Poor-quality images can lead to misinterpretations of perfusion defects. Deep learning (DL)-based methods have been proposed to overcome the noise artefacts. The aim of this study was to investigate the differences among several DL denoising models. Methods Convolution neural network (CNN), residual neural network (RES), UNET and conditional generative adversarial neural network (cGAN) were generated and trained using ordered subsets expectation maximization (OSEM) reconstructed MPS studies acquired with full, half, three-eighths and quarter acquisition time. All DL methods were compared against each other and also against images without DL-based denoising. Comparisons were made using half and quarter time acquisition data. The methods were evaluated in terms of noise level (coefficient of variation of counts, CoV), structural similarity index measure (SSIM) in the myocardium of normal patients and receiver operating characteristic (ROC) analysis of realistic artificial perfusion defects inserted into normal MPS scans. Total perfusion deficit scores were used as observer rating for the presence of a perfusion defect. Results All the DL denoising methods tested provided statistically significantly lower noise level than OSEM without DL-based denoising with the same acquisition time. CoV of the myocardium counts with the different DL noising methods was on average 7% (CNN), 8% (RES), 7% (UNET) and 14% (cGAN) lower than with OSEM. All DL methods also outperformed full time OSEM without DL-based denoising in terms of noise level with both half and quarter acquisition time, but this difference was not statistically significant. cGAN had the lowest CoV of the DL methods at all noise levels. Image quality and polar map uniformity of DL-denoised images were also better than reduced acquisition time OSEM’s. SSIM of the reduced acquisition time OSEM was overall higher than with the DL methods. The defect detection performance of full time OSEM measured as area under the ROC curve (AUC) was on average 0.97. Half time OSEM, CNN, RES and UNET provided equal or nearly equal AUC. However, with quarter time data CNN, RES and UNET had an average AUC of 0.93, which was lower than full time OSEM’s AUC, but equal to quarter acquisition time OSEM. cGAN did not achieve the defect detection performance of the other DL methods. Its average AUC with half time data was 0.94 and 0.91 with quarter time data. Conclusions DL-based denoising effectively improved noise level with slightly lower perfusion defect detection performance than full time reconstruction. cGAN achieved the lowest noise level, but at the same time the poorest defect detection performance among the studied DL methods.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Biomedical Engineering,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3