Quantitative 166Ho-microspheres SPECT derived from a dual-isotope acquisition with 99mTc-colloid is clinically feasible

Author:

Stella M.ORCID,Braat AJATORCID,Lam MGEHORCID,de Jong HWAMORCID,van Rooij R.ORCID

Abstract

Abstract Purpose Accurate dosimetry is essential in radioembolization. To this purpose, an automatic protocol for healthy liver dosimetry based on dual isotope (DI) SPECT imaging, combining holmium-166 (166Ho)-microspheres, and technetium-99 m (99mTc)-colloid was developed: 166Ho-microspheres used as scout and therapeutic particles, and 99mTc-colloid to identify the healthy liver. DI SPECT allows for an automatic and accurate estimation of absorbed doses, introducing true personalized dosimetry. However, photon crosstalk between isotopes can compromise image quality. This study investigates the effect of 99mTc downscatter on 166Ho dosimetry, by comparing 166Ho-SPECT reconstructions of patient scans acquired before (166Ho-only) and after additional administration of 99mTc-colloid (166Ho-DI). Methods The 166Ho-only and 166Ho-DI scans were performed in short succession by injecting 99mTc-colloid on the scanner table. To compensate for 99mTc downscatter, its influence was accounted for in the DI image reconstruction using energy window-based scatter correction methods. The qualitative assessment was performed by independent blinded comparison by two nuclear medicine physicians assessing 65 pairs of SPECT/CT. Inter-observer agreement was tested by Cohen’s kappa coefficient. For the quantitative analysis, two volumes of interest within the liver, VOITUMOR, and VOIHEALTHY were manually delineated on the 166Ho-only reconstruction and transferred to the co-registered 166Ho-DI reconstruction. Absorbed dose within the resulting VOIs, and in the lungs (VOILUNGS), was calculated based on the administered therapeutic activity. Results The qualitative assessment showed no distinct clinical preference for either 166Ho-only or 166Ho-DI SPECT (kappa = 0.093). Quantitative analysis indicated that the mean absorbed dose difference between 166Ho-DI and 166Ho-only was − 2.00 ± 2.84 Gy (median 27 Gy; p value < 0.00001), − 5.27 ± 8.99 Gy (median 116 Gy; p value = 0.00035), and 0.80 ± 1.08 Gy (median 3 Gy; p value < 0.00001) for VOIHEALTHY, VOITUMOR, and VOILUNGS, respectively. The corresponding Pearson’s correlation coefficient between 166Ho-only and 166Ho-DI for absorbed dose was 0.97, 0.99, and 0.82, respectively. Conclusion The DI protocol enables automatic dosimetry with undiminished image quality and accuracy. Clinical trials The clinical study mentioned is registered with Clinicaltrials.gov (NCT02067988) on 20 February 2014.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Biomedical Engineering,Radiation

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3