Abstract
AbstractBackgroundDeep convolutional neural networks have demonstrated robust and reliable PET attenuation correction (AC) as an alternative to conventional AC methods in integrated PET/MRI systems. However, its whole-body implementation is still challenging due to anatomical variations and the limited MRI field of view. The aim of this study is to investigate a deep learning (DL) method to generate voxel-based synthetic CT (sCT) from Dixon MRI and use it as a whole-body solution for PET AC in a PET/MRI system.Materials and methodsFifteen patients underwent PET/CT followed by PET/MRI with whole-body coverage from skull to feet. We performed MRI truncation correction and employed co-registered MRI and CT images for training and leave-one-out cross-validation. The network was pretrained with region-specific images. The accuracy of the AC maps and reconstructed PET images were assessed by performing a voxel-wise analysis and calculating the quantification error in SUV obtained using DL-based sCT (PETsCT) and a vendor-provided atlas-based method (PETAtlas), with the CT-based reconstruction (PETCT) serving as the reference. In addition, region-specific analysis was performed to compare the performances of the methods in brain, lung, liver, spine, pelvic bone, and aorta.ResultsOur DL-based method resulted in better estimates of AC maps with a mean absolute error of 62 HU, compared to 109 HU for the atlas-based method. We found an excellent voxel-by-voxel correlation between PETCTand PETsCT(R2 = 0.98). The absolute percentage difference in PET quantification for the entire image was 6.1% for PETsCTand 11.2% for PETAtlas. The regional analysis showed that the average errors and the variability for PETsCTwere lower than PETAtlasin all regions. The largest errors were observed in the lung, while the smallest biases were observed in the brain and liver.ConclusionsExperimental results demonstrated that a DL approach for whole-body PET AC in PET/MRI is feasible and allows for more accurate results compared with conventional methods. Further evaluation using a larger training cohort is required for more accurate and robust performance.
Funder
H2020 Marie Skłodowska-Curie Actions
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Biomedical Engineering,Radiation
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献