A deep learning-based whole-body solution for PET/MRI attenuation correction

Author:

Ahangari SaharORCID,Beck Olin Anders,Kinggård Federspiel Marianne,Jakoby Bjoern,Andersen Thomas Lund,Hansen Adam Espe,Fischer Barbara Malene,Littrup Andersen Flemming

Abstract

AbstractBackgroundDeep convolutional neural networks have demonstrated robust and reliable PET attenuation correction (AC) as an alternative to conventional AC methods in integrated PET/MRI systems. However, its whole-body implementation is still challenging due to anatomical variations and the limited MRI field of view. The aim of this study is to investigate a deep learning (DL) method to generate voxel-based synthetic CT (sCT) from Dixon MRI and use it as a whole-body solution for PET AC in a PET/MRI system.Materials and methodsFifteen patients underwent PET/CT followed by PET/MRI with whole-body coverage from skull to feet. We performed MRI truncation correction and employed co-registered MRI and CT images for training and leave-one-out cross-validation. The network was pretrained with region-specific images. The accuracy of the AC maps and reconstructed PET images were assessed by performing a voxel-wise analysis and calculating the quantification error in SUV obtained using DL-based sCT (PETsCT) and a vendor-provided atlas-based method (PETAtlas), with the CT-based reconstruction (PETCT) serving as the reference. In addition, region-specific analysis was performed to compare the performances of the methods in brain, lung, liver, spine, pelvic bone, and aorta.ResultsOur DL-based method resulted in better estimates of AC maps with a mean absolute error of 62 HU, compared to 109 HU for the atlas-based method. We found an excellent voxel-by-voxel correlation between PETCTand PETsCT(R2 = 0.98). The absolute percentage difference in PET quantification for the entire image was 6.1% for PETsCTand 11.2% for PETAtlas. The regional analysis showed that the average errors and the variability for PETsCTwere lower than PETAtlasin all regions. The largest errors were observed in the lung, while the smallest biases were observed in the brain and liver.ConclusionsExperimental results demonstrated that a DL approach for whole-body PET AC in PET/MRI is feasible and allows for more accurate results compared with conventional methods. Further evaluation using a larger training cohort is required for more accurate and robust performance.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Biomedical Engineering,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3