Reducing pediatric total-body PET/CT imaging scan time with multimodal artificial intelligence technology

Author:

Zhang Qiyang,Hu Yingying,Zhou Chao,Zhao Yumo,Zhang Na,Zhou Yun,Yang Yongfeng,Zheng Hairong,Fan Wei,Liang Dong,Hu ZhanliORCID

Abstract

Abstract Objectives This study aims to decrease the scan time and enhance image quality in pediatric total-body PET imaging by utilizing multimodal artificial intelligence techniques. Methods A total of 270 pediatric patients who underwent total-body PET/CT scans with a uEXPLORER at the Sun Yat-sen University Cancer Center were retrospectively enrolled. 18F-fluorodeoxyglucose (18F-FDG) was administered at a dose of 3.7 MBq/kg with an acquisition time of 600 s. Short-term scan PET images (acquired within 6, 15, 30, 60 and 150 s) were obtained by truncating the list-mode data. A three-dimensional (3D) neural network was developed with a residual network as the basic structure, fusing low-dose CT images as prior information, which were fed to the network at different scales. The short-term PET images and low-dose CT images were processed by the multimodal 3D network to generate full-length, high-dose PET images. The nonlocal means method and the same 3D network without the fused CT information were used as reference methods. The performance of the network model was evaluated by quantitative and qualitative analyses. Results Multimodal artificial intelligence techniques can significantly improve PET image quality. When fused with prior CT information, the anatomical information of the images was enhanced, and 60 s of scan data produced images of quality comparable to that of the full-time data. Conclusion Multimodal artificial intelligence techniques can effectively improve the quality of pediatric total-body PET/CT images acquired using ultrashort scan times. This has the potential to decrease the use of sedation, enhance guardian confidence, and reduce the probability of motion artifacts.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3