Investigation of PET image quality with acquisition time/bed and enhancement of lesion quantification accuracy through deep progressive learning

Author:

Yang HongxingORCID,Chen Shihao,Qi Ming,Chen Wen,Kong Qing,Zhang Jianping,Song Shaoli

Abstract

Abstract Objective To improve the PET image quality by a deep progressive learning (DPL) reconstruction algorithm and evaluate the DPL performance in lesion quantification. Methods We reconstructed PET images from 48 oncological patients using ordered subset expectation maximization (OSEM) and deep progressive learning (DPL) methods. The patients were enrolled into three overlapped studies: 11 patients for image quality assessment (study 1), 34 patients for sub-centimeter lesion quantification (study 2), and 28 patients for imaging of overweight or obese individuals (study 3). In study 1, we evaluated the image quality visually based on four criteria: overall score, image sharpness, image noise, and diagnostic confidence. We also measured the image quality quantitatively using the signal-to-background ratio (SBR), signal-to-noise ratio (SNR), contrast-to-background ratio (CBR), and contrast-to-noise ratio (CNR). To evaluate the performance of the DPL algorithm in quantifying lesions, we compared the maximum standardized uptake values (SUVmax), SBR, CBR, SNR and CNR of 63 sub-centimeter lesions in study 2 and 44 lesions in study 3. Results DPL produced better PET image quality than OSEM did based on the visual evaluation methods when the acquisition time was 0.5, 1.0 and 1.5 min/bed. However, no discernible differences were found between the two methods when the acquisition time was 2.0, 2.5 and 3.0 min/bed. Quantitative results showed that DPL had significantly higher values of SBR, CBR, SNR, and CNR than OSEM did for each acquisition time. For sub-centimeter lesion quantification, the SUVmax, SBR, CBR, SNR, and CNR of DPL were significantly enhanced, compared with OSEM. Similarly, for lesion quantification in overweight and obese patients, DPL significantly increased these parameters compared with OSEM. Conclusion The DPL algorithm dramatically enhanced the quality of PET images and enabled more accurate quantification of sub-centimeters lesions in patients and lesions in overweight or obese patients. This is particularly beneficial for overweight or obese patients who usually have lower image quality due to the increased attenuation.

Funder

key laboratory program of the Education Commission of Shanghai Municipality

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3