Quantitative evaluation of PSMA PET imaging using a realistic anthropomorphic phantom and shell-less radioactive epoxy lesions

Author:

Fedrigo Roberto,Kadrmas Dan J.,Edem Patricia E.,Fougner Lauren,Klyuzhin Ivan S.,Petric M. Peter,Bénard François,Rahmim Arman,Uribe CarlosORCID

Abstract

Abstract Background Positron emission tomography (PET) with prostate specific membrane antigen (PSMA) have shown superior performance in detecting metastatic prostate cancers. Relative to [18F]fluorodeoxyglucose ([18F]FDG) PET images, PSMA PET images tend to visualize significantly higher-contrast focal lesions. We aim to evaluate segmentation and reconstruction algorithms in this emerging context. Specifically, Bayesian or maximum a posteriori (MAP) image reconstruction, compared to standard ordered subsets expectation maximization (OSEM) reconstruction, has received significant interest for its potential to reach convergence with minimal noise amplifications. However, few phantom studies have evaluated the quantitative accuracy of such reconstructions for high contrast, small lesions (sub-10 mm) that are typically observed in PSMA images. In this study, we cast 3 mm–16-mm spheres using epoxy resin infused with a long half-life positron emitter (sodium-22; 22Na) to simulate prostate cancer metastasis. The anthropomorphic Probe-IQ phantom, which features a liver, bladder, lungs, and ureters, was used to model relevant anatomy. Dynamic PET acquisitions were acquired and images were reconstructed with OSEM (varying subsets and iterations) and BSREM (varying β parameters), and the effects on lesion quantitation were evaluated. Results The 22Na lesions were scanned against an aqueous solution containing fluorine-18 (18F) as the background. Regions-of-interest were drawn with MIM Software using 40% fixed threshold (40% FT) and a gradient segmentation algorithm (MIM’s PET Edge+). Recovery coefficients (RCs) (max, mean, peak, and newly defined “apex”), metabolic tumour volume (MTV), and total tumour uptake (TTU) were calculated for each sphere. SUVpeak and SUVapex had the most consistent RCs for different lesion-to-background ratios and reconstruction parameters. The gradient-based segmentation algorithm was more accurate than 40% FT for determining MTV and TTU, particularly for lesions $$\le$$  6 mm in diameter (R2 = 0.979–0.996 vs. R2 = 0.115–0.527, respectively). Conclusion An anthropomorphic phantom was used to evaluate quantitation for PSMA PET imaging of metastatic prostate cancer lesions. BSREM with β = 200–400 and OSEM with 2–5 iterations resulted in the most accurate and robust measurements of SUVmean, MTV, and TTU for imaging conditions in 18F-PSMA PET/CT images. SUVapex, a hybrid metric of SUVmax and SUVpeak, was proposed for robust, accurate, and segmentation-free quantitation of lesions for PSMA PET.

Funder

natural sciences and engineering research council of canada

institute of cancer research

Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Biomedical Engineering,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3