Abstract
Abstract
Background
The present study tested the possible utility of fractal analysis from l-[methyl-11C]-methionine (MET) uptake in patients with newly diagnosed gliomas for differentiating glioma, especially in relation to isocitrate dehydrogenase 1 (IDH1) mutation status, and as compared with the conventional standardized uptake value (SUV) parameters.
Methods
Investigations of MET PET/CT were performed retrospectively in 47 patients with newly diagnosed glioma. Tumors were divided into three groups: lower grade glioma (IDH1-mutant diffuse astrocytoma and IDH1-mutant anaplastic astrocytoma), higher grade glioma (IDH1-wildtype diffuse astrocytoma and IDH1-wildtype anaplastic astrocytoma), and glioblastoma. The fractal dimension for tumor, maximum SUV (SUVmax) for tumor (T) and mean SUV for normal contralateral hemisphere (N) were calculated, and the tumor-to-normal (T/N) ratio was determined. Metabolic tumor volume (MTV) and total lesion MET uptake (TLMU) were also measured.
Results
There were significant differences in SUVmax (p = 0.006) and T/N ratio (p = 0.02) between lower grade glioma and glioblastoma. There were no significant differences among any of the three groups in MTV or TLMU. Significant differences were obtained in the fractal dimension between lower grade glioma and higher grade glioma (p = 0.006) and glioblastoma (p < 0.001).
Conclusions
The results of this preliminary study in a small patient population suggest that the fractal dimension using MET PET in patients with newly diagnosed gliomas is useful for differentiating glioma, especially in relation to IDH1 mutation status, which has not been possible with SUV parameters.
Publisher
Springer Science and Business Media LLC
Subject
Radiology Nuclear Medicine and imaging,Instrumentation,Biomedical Engineering,Radiation
Reference16 articles.
1. Woodworth GF, McGirt MJ, Samdani A, Garonzik I, Olivi A, Weingart JD. Frameless image-guided stereotactic brain biopsy procedure: diagnostic yield, surgical morbidity, and comparison with the frame-based technique. J Neurosurg. 2006;104:233–7.
2. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131:803–20.
3. Ceyssens S, Van Laere K, de Groot T, Goffin J, Bormans G, Mortelmans L. [11C]methionine PET, histopathology, and survival in primary brain tumors and recurrence. Am J Neuroradiol. 2006;27:1432–7.
4. Glaudemans AW, Enting RH, Heesters MA, Dierckx RA, van Rheenen RW, Walenkamp AM, et al. Value of 11C-methionine PET in imaging brain tumours and metastases. Eur J Nucl Med Mol Imaging. 2013;40:615–35.
5. Kim D, Chun JH, Kim SH, Moon JH, Kang SG, Chang JH, et al. Re-evaluation of the diagnostic performance of 11C-methionine PET/CT according to the 2016 WHO classification of cerebral gliomas. Eur J Nucl Med Mol Imaging. 2019;46:1678–84.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献