Deep learning-based measurement of split glomerular filtration rate with 99mTc-diethylenetriamine pentaacetic acid renal scan

Author:

Ha Sejin,Park Byung Soo,Han Sangwon,Oh Jungsu S.ORCID,Chae Sun Young,Kim Jae Seung,Moon Dae Hyuk

Abstract

Abstract Purpose To develop a deep learning (DL) model for generating automated regions of interest (ROIs) on 99mTc-diethylenetriamine pentaacetic acid (DTPA) renal scans for glomerular filtration rate (GFR) measurement. Methods Manually-drawn ROIs retrieved from a Picture Archiving and Communications System were used as ground-truth (GT) labels. A two-dimensional U-Net convolutional neural network architecture with multichannel input was trained to generate DL ROIs. The agreement between GFR values from GT and DL ROIs was evaluated using Lin’s concordance correlation coefficient (CCC) and slope coefficients for linear regression analyses. Bias and 95% limits of agreement (LOA) were assessed using Bland-Altman plots. Results A total of 24,364 scans (12,822 patients) were included. Excellent concordance between GT and DL GFR was found for left (CCC 0.982, 95% confidence interval [CI] 0.981–0.982; slope 1.004, 95% CI 1.003–1.004), right (CCC 0.969, 95% CI 0.968–0.969; slope 0.954, 95% CI 0.953–0.955) and both kidneys (CCC 0.978, 95% CI 0.978–0.979; slope 0.979, 95% CI 0.978–0.979). Bland-Altman analysis revealed minimal bias between GT and DL GFR, with mean differences of − 0.2 (95% LOA − 4.4–4.0), 1.4 (95% LOA − 3.5–6.3) and 1.2 (95% LOA − 6.5–8.8) mL/min/1.73 m² for left, right and both kidneys, respectively. Notably, 19,960 scans (81.9%) showed an absolute difference in GFR of less than 5 mL/min/1.73 m². Conclusion Our DL model exhibited excellent performance in the generation of ROIs on 99mTc-DTPA renal scans. This automated approach could potentially reduce manual effort and enhance the precision of GFR measurement in clinical practice.

Funder

National Research Foundation of Korea

Korea Health Industry Development Institute

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3