Optimising total knee replacement imaging: a novel 3D printed PET/CT anthropomorphic phantom for metal artefact simulation

Author:

Assiri RajehORCID,Knapp Karen,Fulford Jon,Chen Junning

Abstract

Abstract Purpose Arthroplasty phantoms, including total knee replacement (TKR) phantoms, have been frequently used to test metal artefact reduction methods applied to positron emission tomography/computed tomography (PET/CT) images. These phantoms generally simulate either simple anatomical features or simple activity distribution around the metal inserts in the PET/CT scans. 3D printing has been used recently to fabricate fillable anthropomorphic phantoms that accurately simulate volume and geometry. This study aims to describe the process of image segmentation, phantom modelling, 3D printing and validation of a population-based fillable TKR phantom that simulates human TKR PET/CT metal artefacts. Methods 10 participants (5 male and 5 female) were scanned using 3T MRI and the images were segmented to create average male and average female 3D knee models, inversely with void cortical and porous trabecular compartments for 3D printing and contrast media. Virtual total knee replacement (TKR) surgery was implemented on these models to prepare the insertion locations for knee prosthetic implants. Subsequently, TKR models were printed using a 3D photopolymer resin printer and then injected with normal saline to test the phantoms for any leaks. Subsequently, diluted iodinated contrast media was injected into the cortical compartment and saline with 18F-FDG was injected into the trabecular compartment and the phantom was scanned with PET/CT. The images were then evaluated and compared to the human knee radiographic features reported in the literature. Results Phantoms were shown to be fluid-tight with distinct compartments. They showed comparable volume and geometry to the segmented human MRI knees. The phantoms demonstrated similar values for x-ray attenuation and Hounsfield units (HU) to the literature for both cortical and trabecular compartments. The phantoms displayed a uniform distribution for the radioactive tracer, resembling that seen in human trabecular bone PET. TKR phantom PET/CT images with metal inserts replicated the clinical metal artefacts seen clinically in the periprosthetic area. Conclusion This novel, 3D-printed, and customisable phantom effectively mimics the geometric, radiographic and radiotracer distribution features of real TKRs. Importantly, it simulates TKR image metal artefacts, making it suitable for repeatable and comprehensive evaluation of various metal artefact reduction methods in future research.

Funder

Saudi Arabia Cultural Bureau in London

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3