Subtraction of single-photon emission computed tomography (SPECT) in radioembolization: a comparison of four methods

Author:

Kerckhaert Camiel E. M.ORCID,de Jong Hugo W. A. M.,Meddens Marjolein B. M.,van Rooij Rob,Smits Maarten L. J.,Rakvongthai Yothin,Dietze Martijn M. A.

Abstract

Abstract Background Subtraction of single-photon emission computed tomography (SPECT) images has a number of clinical applications in e.g. foci localization in ictal/inter-ictal SPECT and defect detection in rest/stress cardiac SPECT. In this work, we investigated the technical performance of SPECT subtraction for the purpose of quantifying the effect of a vasoconstricting drug (angiotensin-II, or AT2) on the Tc-99m-MAA liver distribution in hepatic radioembolization using an innovative interventional hybrid C-arm scanner. Given that subtraction of SPECT images is challenging due to high noise levels and poor resolution, we compared four methods to obtain a difference image in terms of image quality and quantitative accuracy. These methods included (i) image subtraction: subtraction of independently reconstructed SPECT images, (ii) projection subtraction: reconstruction of a SPECT image from subtracted projections, (iii) projection addition: reconstruction by addition of projections as a background term during the iterative reconstruction, and (iv) image addition: simultaneous reconstruction of the difference image and the subtracted image. Results Digital simulations (XCAT) and phantom studies (NEMA-IQ and anthropomorphic torso) showed that all four methods were able to generate difference images but their performance on specific metrics varied substantially. Image subtraction had the best quantitative performance (activity recovery coefficient) but had the worst visual quality (contrast-to-noise ratio) due to high noise levels. Projection subtraction showed a slightly better visual quality than image subtraction, but also a slightly worse quantitative accuracy. Projection addition had a substantial bias in its quantitative accuracy which increased with less counts in the projections. Image addition resulted in the best visual image quality but had a quantitative bias when the two images to subtract contained opposing features. Conclusion All four investigated methods of SPECT subtraction demonstrated the capacity to generate a feasible difference image from two SPECT images. Image subtraction is recommended when the user is only interested in quantitative values, whereas image addition is recommended when the user requires the best visual image quality. Since quantitative accuracy is most important for the dosimetric investigation of AT2 in radioembolization, we recommend using the image subtraction method for this purpose.

Funder

Innovative Health Initiative

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3