Combining deep learning with a kinetic model to predict dynamic PET images and generate parametric images

Author:

Liang Ganglin,Zhou Jinpeng,Chen Zixiang,Wan Liwen,Wumener Xieraili,Zhang Yarong,Liang Dong,Liang Ying,Hu ZhanliORCID

Abstract

Abstract Background Dynamic positron emission tomography (PET) images are useful in clinical practice because they can be used to calculate the metabolic parameters (Ki) of tissues using graphical methods (such as Patlak plots). Ki is more stable than the standard uptake value and has a good reference value for clinical diagnosis. However, the long scanning time required for obtaining dynamic PET images, usually an hour, makes this method less useful in some ways. There is a tradeoff between the scan durations and the signal-to-noise ratios (SNRs) of Ki images. The purpose of our study is to obtain approximately the same image as that produced by scanning for one hour in just half an hour, improving the SNRs of images obtained by scanning for 30 min and reducing the necessary 1-h scanning time for acquiring dynamic PET images. Methods In this paper, we use U-Net as a feature extractor to obtain feature vectors with a priori knowledge about the image structure of interest and then utilize a parameter generator to obtain five parameters for a two-tissue, three-compartment model and generate a time activity curve (TAC), which will become close to the original 1-h TAC through training. The above-generated dynamic PET image finally obtains the Ki parameter image. Results A quantitative analysis showed that the network-generated Ki parameter maps improved the structural similarity index measure and peak SNR by averages of 2.27% and 7.04%, respectively, and decreased the root mean square error (RMSE) by 16.3% compared to those generated with a scan time of 30 min. Conclusions The proposed method is feasible, and satisfactory PET quantification accuracy can be achieved using the proposed deep learning method. Further clinical validation is needed before implementing this approach in routine clinical applications.

Funder

the Shenzhen Excellent Technological Innovation Talent Training Project of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Biomedical Engineering,Radiation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3