Abstract
Abstract
Background
Dynamic positron emission tomography (PET) images are useful in clinical practice because they can be used to calculate the metabolic parameters (Ki) of tissues using graphical methods (such as Patlak plots). Ki is more stable than the standard uptake value and has a good reference value for clinical diagnosis. However, the long scanning time required for obtaining dynamic PET images, usually an hour, makes this method less useful in some ways. There is a tradeoff between the scan durations and the signal-to-noise ratios (SNRs) of Ki images. The purpose of our study is to obtain approximately the same image as that produced by scanning for one hour in just half an hour, improving the SNRs of images obtained by scanning for 30 min and reducing the necessary 1-h scanning time for acquiring dynamic PET images.
Methods
In this paper, we use U-Net as a feature extractor to obtain feature vectors with a priori knowledge about the image structure of interest and then utilize a parameter generator to obtain five parameters for a two-tissue, three-compartment model and generate a time activity curve (TAC), which will become close to the original 1-h TAC through training. The above-generated dynamic PET image finally obtains the Ki parameter image.
Results
A quantitative analysis showed that the network-generated Ki parameter maps improved the structural similarity index measure and peak SNR by averages of 2.27% and 7.04%, respectively, and decreased the root mean square error (RMSE) by 16.3% compared to those generated with a scan time of 30 min.
Conclusions
The proposed method is feasible, and satisfactory PET quantification accuracy can be achieved using the proposed deep learning method. Further clinical validation is needed before implementing this approach in routine clinical applications.
Funder
the Shenzhen Excellent Technological Innovation Talent Training Project of China
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Biomedical Engineering,Radiation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献