Precision dosimetry in yttrium-90 radioembolization through CT imaging of radiopaque microspheres in a rabbit liver model

Author:

Henry E. Courtney,Strugari Matthew,Mawko George,Brewer Kimberly,Liu David,Gordon Andrew C.,Bryan Jeffrey N.,Maitz Charles,Abraham Robert,Kappadath S. Cheenu,Syme Alasdair

Abstract

Abstract Purpose To perform precision dosimetry in yttrium-90 radioembolization through CT imaging of radiopaque microspheres in a rabbit liver model and to compare extracted dose metrics to those produced from conventional PET-based dosimetry. Materials and methods A CT calibration phantom was designed containing posts with nominal microsphere concentrations of 0.5 mg/mL, 5.0 mg/mL, and 25.0 mg/mL. The mean Hounsfield unit was extracted from the post volumes to generate a calibration curve to relate Hounsfield units to microsphere concentration. A nominal bolus of 40 mg of microspheres was administered to the livers of eight rabbits, followed by PET/CT imaging. A CT-based activity distribution was calculated through the application of the calibration curve to the CT liver volume. Post-treatment dosimetry was performed through the convolution of yttrium-90 dose-voxel kernels and the PET- and CT-based cumulated activity distributions. The mean dose to the liver in PET- and CT-based dose distributions was compared through linear regression, ANOVA, and Bland–Altman analysis. Results A linear least-squares fit to the average Hounsfield unit and microsphere concentration data from the calibration phantom confirmed a strong correlation (r2 > 0.999) with a slope of 14.13 HU/mg/mL. A poor correlation was found between the mean dose derived from CT and PET (r2 = 0.374), while the ANOVA analysis revealed statistically significant differences (p < 10−12) between the MIRD-derived mean dose and the PET- and CT-derived mean dose. Bland–Altman analysis predicted an offset of 15.0 Gy between the mean dose in CT and PET. The dose within the liver was shown to be more heterogeneous in CT than in PET with an average coefficient of variation equal to 1.99 and 1.02, respectively. Conclusion The benefits of a CT-based approach to post-treatment dosimetry in yttrium-90 radioembolization include improved visualization of the dose distribution, reduced partial volume effects, a better representation of dose heterogeneity, and the mitigation of respiratory motion effects. Post-treatment CT imaging of radiopaque microspheres in yttrium-90 radioembolization provides the means to perform precision dosimetry and extract accurate dose metrics used to refine the understanding of the dose–response relationship, which could ultimately improve future patient outcomes.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Biomedical Engineering,Radiation

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3