Comparison of the dosimetry of scandium-43 and scandium-44 patient organ doses in relation to commonly used gallium-68 for imaging neuroendocrine tumours

Author:

Gomes Carlos ViníciusORCID,Mendes Bruno Melo,Paixão Lucas,Gnesin Silvano,Müller Cristina,van der Meulen Nicholas P.,Strobel Klaus,Fonseca Telma Cristina Ferreira,Lima Thiago Viana Miranda

Abstract

Abstract Background Several research groups have explored the potential of scandium radionuclides for theragnostic applications due to their longer half-lives and equal or similar coordination chemistry between their diagnostic and therapeutic counterparts, as well as lutetium-177 and terbium-161, respectively. Unlike the gallium-68/lutetium-177 pair, which may show different in-vivo uptake patterns, the use of scandium radioisotopes promises consistent behaviour between diagnostic and therapeutic radiopeptides. An advantage of scandium’s longer half-life over gallium-68 is the ability to study radiopeptide uptake over extended periods and its suitability for centralized production and distribution. However, concerns arise from scandium-44’s decay characteristics and scandium-43’s high production costs. This study aimed to evaluate the dosimetric implications of using scandium radioisotopes with somatostatin analogues against gallium-68 for PET imaging of neuroendocrine tumours. Methods Absorbed dose per injected activity (AD/IA) from the generated time-integrated activity curve (TIAC) were estimated using the radiopeptides [43/44/44mSc]Sc- and [68Ga]Ga-DOTATATE. The kidneys, liver, spleen, and red bone marrow (RBM) were selected for dose estimation studies. The EGSnrc and MCNP6.1 Monte Carlo (MC) codes were used with female (AF) and male (AM) ICRP phantoms. The results were compared to Olinda/EXM software, and the effective dose concentrations assessed, varying composition between the scandium radioisotopes. Results Our findings showed good agreement between the MC codes, with − 3 ± 8% mean difference. Kidneys, liver, and spleen showed differences between the MC codes (min and max) in a range of − 4% to 8%. This was observed for both phantoms for all radiopeptides used in the study. Compared to Olinda/EXM the largest observed difference was for the RBM, of 21% for the AF and 16% for the AM for scandium- and gallium-based radiopeptides. Despite the differences, our findings showed a higher absorbed dose on [43/44Sc]Sc-DOTATATE compared to its 68Ga-based counterpart. Conclusion This study found that [43/44Sc]Sc-DOTATATE delivers a higher absorbed dose to organs at risk compared to [68Ga]Ga-DOTATATE, assuming equal distribution. This is due to the longer half-life of scandium radioisotopes compared to gallium-68. However, calculated doses are within acceptable ranges, making scandium radioisotopes a feasible replacement for gallium-68 in PET imaging, potentially offering enhanced diagnostic potential with later timepoint imaging.

Funder

CNPq

CAPES

FAPEMIG

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3