Abstract
Abstract
Background
Several research groups have explored the potential of scandium radionuclides for theragnostic applications due to their longer half-lives and equal or similar coordination chemistry between their diagnostic and therapeutic counterparts, as well as lutetium-177 and terbium-161, respectively. Unlike the gallium-68/lutetium-177 pair, which may show different in-vivo uptake patterns, the use of scandium radioisotopes promises consistent behaviour between diagnostic and therapeutic radiopeptides. An advantage of scandium’s longer half-life over gallium-68 is the ability to study radiopeptide uptake over extended periods and its suitability for centralized production and distribution. However, concerns arise from scandium-44’s decay characteristics and scandium-43’s high production costs. This study aimed to evaluate the dosimetric implications of using scandium radioisotopes with somatostatin analogues against gallium-68 for PET imaging of neuroendocrine tumours.
Methods
Absorbed dose per injected activity (AD/IA) from the generated time-integrated activity curve (TIAC) were estimated using the radiopeptides [43/44/44mSc]Sc- and [68Ga]Ga-DOTATATE. The kidneys, liver, spleen, and red bone marrow (RBM) were selected for dose estimation studies. The EGSnrc and MCNP6.1 Monte Carlo (MC) codes were used with female (AF) and male (AM) ICRP phantoms. The results were compared to Olinda/EXM software, and the effective dose concentrations assessed, varying composition between the scandium radioisotopes.
Results
Our findings showed good agreement between the MC codes, with − 3 ± 8% mean difference. Kidneys, liver, and spleen showed differences between the MC codes (min and max) in a range of − 4% to 8%. This was observed for both phantoms for all radiopeptides used in the study. Compared to Olinda/EXM the largest observed difference was for the RBM, of 21% for the AF and 16% for the AM for scandium- and gallium-based radiopeptides. Despite the differences, our findings showed a higher absorbed dose on [43/44Sc]Sc-DOTATATE compared to its 68Ga-based counterpart.
Conclusion
This study found that [43/44Sc]Sc-DOTATATE delivers a higher absorbed dose to organs at risk compared to [68Ga]Ga-DOTATATE, assuming equal distribution. This is due to the longer half-life of scandium radioisotopes compared to gallium-68. However, calculated doses are within acceptable ranges, making scandium radioisotopes a feasible replacement for gallium-68 in PET imaging, potentially offering enhanced diagnostic potential with later timepoint imaging.
Publisher
Springer Science and Business Media LLC
Reference33 articles.
1. Singh A, Van Der Meulen NP, Müller C, Klette I, Kulkarni HR, Türler A, et al. First-in-human PET/CT imaging of metastatic neuroendocrine neoplasms with cyclotron-produced 44Sc-DOTATOC: a proof-of-concept study. Cancer Biother Radiopharm. 2017;32:124–32.
2. Eppard E, de la Fuente A, Benešová M, Khawar A, Bundschuh RA, Gärtner FC, et al. Clinical translation and first in-human use of [44Sc]Sc-PSMA-617 for PET imaging of metastasized castrate-resistant prostate cancer. Theranostics. 2017;7:4359–69.
3. Umbricht CA, Benešová M, Schmid RM, Türler A, Schibli R, van der Meulen NP, et al. 44Sc-PSMA-617 for radiotheragnostics in tandem with 177Lu-PSMA-617—preclinical investigations in comparison with 68Ga-PSMA-11 and 68Ga-PSMA-617. EJNMMI Res. 2017;7:1–10.
4. Müller C, Bunka M, Haller S, Köster U, Groehn V, Bernhardt P, et al. Promising prospects for 44Sc-/47Sc-based theragnostics: application of 47Sc for radionuclide tumor therapy in mice. J Nucl Med. 2014;55:1658–64.
5. Domnanich KA, Müller C, Farkas R, Schmid RM, Ponsard B, Schibli R, et al. 44Sc for labeling of DOTA- and NODAGA-functionalized peptides: preclinical in vitro and in vivo investigations. EJNMMI Radiopharm Chem. 2017;1:1–19. https://doi.org/10.1186/s41181-016-0013-5.