Abstract
Abstract
Purpose
Digital PET involving silicon photomultipliers (SiPM) provides an enhanced time-of-flight (TOF) resolution as compared with photomultiplier (PMT)-based PET, but also a better prevention of the count-related rises in dead time and pile-up effects mainly due to smaller trigger domains (i.e., the detection surfaces associated with each trigger circuit). This study aimed to determine whether this latter property could help prevent against deteriorations in TOF resolution and TOF image quality in the wide range of PET count rates documented in clinical routine.
Methods
Variations, according to count rates, in timing resolution and in TOF-related enhancement of the quality of phantom images were compared between the first fully digital PET (Vereos) and a PMT-based PET (Ingenuity). Single-count rate values were additionally extracted from the list-mode data of routine analog- and digital-PET exams at each 500-ms interval, in order to determine the ranges of routine PET count rates.
Results
Routine PET count rates were lower for the Vereos than for the Ingenuity. For Ingenuity, the upper limits were estimated at approximately 21.7 and 33.2 Mcps after injection of respectively 3 and 5 MBq.kg-1 of current 18F-labeled tracers. At 5.8 Mcps, corresponding to the lower limit of the routine count rates documented with the Ingenuity, timing resolutions provided by the scatter phantom were 326 and 621 ps for Vereos and Ingenuity, respectively. At higher count rates, timing resolution was remarkably stable for Vereos but exhibited a progressive deterioration for Ingenuity, respectively reaching 732 and 847 ps at the upper limits of 21.7 and 33.2 Mcps. The averaged TOF-related gain in signal/noise ratio was stable at approximately 2 for Vereos but decreased from 1.36 at 5.8 Mcps to 1.14 and 1.00 at respectively 21.7 and 33.2 Mcps for Ingenuity.
Conclusion
Contrary to the Ingenuity PMT-based PET, the Vereos fully digital PET is unaffected by any deterioration in TOF resolution and consequently, in the quality of TOF images, in the wide range of routine PET count rates. This advantage is even more striking with higher count-rates for which the preferential use of digital PET should be further recommended (i.e., dynamic PET recording, higher injected activities).
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Biomedical Engineering,Radiation
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献