Monte Carlo simulation of the system performance of a long axial field-of-view PET based on monolithic LYSO detectors

Author:

Abi-Akl MayaORCID,Dadgar Meysam,Toufique Yassine,Bouhali Othmane,Vandenberghe Stefaan

Abstract

Abstract Background In light of the milestones achieved in PET design so far, further sensitivity improvements aim to optimise factors such as the dose, throughput, and detection of small lesions. While several longer axial field-of-view (aFOV) PET systems based on pixelated detectors have been installed, continuous monolithic scintillation detectors recently gained increased attention due to their depth of interaction capability and superior intrinsic resolution. As a result, the aim of this work is to present and evaluate the performance of two long aFOV, monolithic LYSO-based PET scanner designs. Methods Geant4 Application for Tomographic Emission (GATE) v9.1 was used to perform the simulations. Scanner designs A and B have an aFOV of 36.2 cm (7 rings) and 72.6 cm (14 rings), respectively, with 40 detector modules per ring each and a bore diameter of 70 cm. Each module is a 50 × 50 × 16 mm3 monolithic LYSO crystal. Sensitivity, noise equivalent count rate (NECR), scatter fraction, spatial resolution, and image quality tests were performed based on NEMA NU-2018 standards. Results The sensitivity of design A was calculated to be 29.2 kcps/MBq at the centre and 27 kcps/MBq at 10 cm radial offset; similarly, the sensitivity of design B was found to be 106.8 kcps/MBq and 98.3 kcps/MBq at 10 cm radial offset. NECR peaks were reached at activity concentrations beyond the range of activities used for clinical studies. In terms of spatial resolution, the values for the point sources were below 2 mm for the radial, tangential, and axial full width half maximum. The contrast recovery coefficient ranged from 53% for design B and 4:1 contrast ratio to 90% for design A and 8:1 ratio, with a reasonably low background variability. Conclusions Longer aFOV PET designs using monolithic LYSO have superior spatial resolution compared to current pixelated total-body PET (TB-PET) scanners. These systems combine high sensitivity with improved contrast recovery.

Funder

FWO Large-scale research infrastructure

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Biomedical Engineering,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3