Abstract
Abstract
Background
Left ventricular ejection fraction (LVEF) is usually measured by cine-cardiac magnetic resonance imaging (MRI), planar and single-photon emission-computerized tomography (SPECT) equilibrium radionuclide angiocardiography (ERNA), and echocardiography. It would be clinically useful to measure LVEF from first-pass positron-emission tomography/computed tomography (PET/CT) radionuclide angiography, but this approach has been limited by fast radiotracer diffusion. Ultra-sensitive digital PET systems can produce high-quality images within 3-s acquisition times. This study determined whether digital PET/CT accurately measured LVEF in an anthropomorphic heart phantom under conditions mimicking radiotracer first-pass into the cardiac cavities.
Methods
Heart phantoms in end-diastole and end-systole were 3D-printed from a patient’s MRI dataset. Reference left ventricle end-diastole volume (EDV), end-systole volume (ESV), and LVEF were determined by phantom weights before/after water filling. PET/CT (3-s acquisitions), MRI, and planar and SPECT ERNA were performed. EDV, ESV, and/or LVEF were measured by manual and automated cardiac cavity delineation, using clinical segmentation softwares. LVEF was also measured from PET images converted to 2D “pseudo-planar” images along the short axis and horizontal long axis. LVEF was also calculated for planar ERNA images. All LVEF, ESV and EDV values were compared to the reference values assessed by weighing.
Results
Manually calculated 3D-PET-CT-based EDV, ESV, and LVEF were close to MRI and reference values. Automated calculations on the 3D-PET-CT dataset were unreliable, suggesting that the SPECT-based tool used for this calculation is not well adapted for PET acquisitions. Manual and automated LVEF estimations from “pseudo-planar” PET images were very close/identical to MRI and reference values.
Conclusions
First-pass “pseudo-planar” PET may be a promising method for estimating LVEF, easy to use in clinical practice. Processing 3D PET images is also a valid method but to date suffers from a lack of well-suited software for automated LV segmentation.
Funder
Centre Hospitalier Regional Metz Thionville
Publisher
Springer Science and Business Media LLC
Subject
Radiology Nuclear Medicine and imaging,Instrumentation,Biomedical Engineering,Radiation
Reference28 articles.
1. Marcu CB, Beek AM, van Rossum AC. Clinical applications of cardiovascular magnetic resonance imaging. CMAJ. 2006;175(8):911–7.
2. Wackers FJT, Berger HJ, Johnstone DE, Goldman L, Reduto LA, Langou RA, et al. Multiple gated cardiac blood pool imaging for left ventricular ejection fraction: validation of the technique and assessment of variability. Am J Cardiol. 1979;43(6):1159–66.
3. Nichols KJ, Tosh AV, Wang Y, Palestro CJ, Reichek N. Validation of gated blood-pool SPECT regional left ventricular function measurements. J Nucl Med. 2009;50(1):53–60.
4. Berning J, Nielsen JR, Launbjerg J, Fogh J, Mickley H, Andersen PE. Rapid estimation of left ventricular ejection fraction in acute myocardial infarction by echocardiographic wall motion analysis. CRD. 1992;80(3-4):257–66.
5. Johri AM, Picard MH, Newell J, Marshall JE, King MEE, Hung J. Can a teaching intervention reduce interobserver variability in LVEF assessment: a quality control exercise in the echocardiography lab. JACC Cardiovasc Imaging. 2011;4(8):821–9.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献