Automatic delineation and quantification of pulmonary vascular obstruction index in patients with pulmonary embolism using Perfusion SPECT-CT: a simulation study

Author:

Bourhis David,Wagner Laura,Rioult Julien,Robin Philippe,Le Pennec Romain,Tromeur Cécile,Salaün Pierre Yves,Le Roux Pierre Yves

Abstract

Abstract Background In patients with pulmonary embolism (PE), there is a growing interest in quantifying the pulmonary vascular obtruction index (PVOI), which may be an independent risk factor for PE recurrence. Perfusion SPECT/CT is a very attractive tool to provide an accurate quantification of the PVOI. However, there is currently no reliable method to automatically delineate and quantify it. The aim of this phantom study was to assess and compare 3 segmentation methods for PVOI quantification with perfusion SPECT/CT imaging. Methods Three hundred ninety-six SPECT/CT scans, with various PE scenarios (n = 44), anterior to posterior perfusion gradients (n = 3), and lung volumes (n = 3) were simulated using Simind software. Three segmentation methods were assesssed: (1) using an intensity threshold expressed as a percentage of the maximal voxel value (MaxTh), (2) using a Z-score threshold (ZTh) after building a Z-score parametric lung map, and (3) using a relative difference threshold (RelDiffTh) after building a relative difference parametric map. Ninety randomly selected simulations were used to define the optimal threshold, and 306 simulations were used for the complete analysis. Spacial correlation between PE volumes from the phantom data and the delineated PE volumes was assessed by computing DICEPE indices. Bland-Altman statistics were used to calculate agreement for PVOI between the phantom data and the segmentation methods. Results Mean DICEPE index was higher with the RelDiffTh method (0.85 ± 0.08), as compared with the MaxTh method (0.78 ± 0.16) and the ZTh method (0.67 ± 0.15). Using the RelDiffTh method, mean DICEPE index remained high (> 0.81) regardless of the perfusion gradient and the lung volumes. Using the RelDiffTh method, mean relative difference in PVOI was − 12%, and the limits of agreement were − 40% to 16%. Values were 3% (− 75% to 81%) for MaxTh method and 0% (− 120% to 120%) for ZTh method. Graphycal analysis of the Bland-Altman graph for the RelDiffTh method showed very close estimation of the PVOI for small and medium PE, and a trend toward an underestimation of large PE. Conclusion In this phantom study, a delineation method based on a relative difference parametric map provided a good estimation of the PVOI, regardless of the extent of PE, the intensity of the anterior to posterior gradient, and the whole lung volumes.

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging,Instrumentation,Biomedical Engineering,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3