Author:
Chao Herta HA,Luo Xi,Chang Jeremy LK,Li Chiang-shan R
Abstract
Abstract
Background
Our previous work described the neural processes of motor response inhibition during a stop signal task (SST). Employing the race model, we computed the stop signal reaction time (SSRT) to index individuals' ability in inhibitory control. The pre-supplementary motor area (preSMA), which shows greater activity in individuals with short as compared to those with long SSRT, plays a role in mediating response inhibition. In contrast, the right inferior prefrontal cortex (rIFC) showed greater activity during stop success as compared to stop error. Here we further pursued this functional differentiation of preSMA and rIFC on the basis of an intra-subject approach.
Results
Of 65 subjects who participated in four sessions of the SST, we identified 30 individuals who showed a difference in SSRT but were identical in other aspects of stop signal performance between the first ("early") and last two ("late") sessions. By comparing regional brain activation between the two sessions, we confirmed greater preSMA but not rIFC activity during short as compared to long SSRT session within individuals. Furthermore, putamen, anterior cerebellum and middle/posterior cingulate cortex also showed greater activity in association with short SSRT.
Conclusion
These results are consistent with a role of medial prefrontal cortex in controlled action and inferior frontal cortex in orienting attention. We discussed these findings with respect to the process of attentional monitoring and inhibitory motor control during stop signal inhibition.
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,General Neuroscience
Reference88 articles.
1. Logan GD: On the ability to inhibit thought and action: A user's guide to the stop signal paradigm. Inhibitory Processes in Attention. Edited by: Dagenbach D, Carr TH. 1994, Memory and Language, Academic Press, San Diego, 189-239.
2. Logan GD, Cowan WB: On the ability to inhibit thought and action: A theory of an act of control. Psychol Rev. 1984, 91: 295-327. 10.1037/0033-295X.91.3.295.
3. Aron AR, Poldrack RA: Cortical and subcortical contributions to Stop signal response inhibition: role of the subthalamic nucleus. J Neurosci. 2006, 26: 2424-2433. 10.1523/JNEUROSCI.4682-05.2006.
4. Rubia K, Smith AB, Brammer MJ, Taylor E: Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection. Neuroimage. 2003, 20: 351-358. 10.1016/S1053-8119(03)00275-1.
5. Rubia K, Smith AB, Brammer MJ, Toone B, Taylor E: Abnormal brain activation during inhibition and error detection in medication-naïve adolescents with ADHD. Am J Psychiatry. 2005, 162: 1067-1075. 10.1176/appi.ajp.162.6.1067.
Cited by
123 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献