Author:
Kondo Keita,Maruishi Masaharu,Ueno Hiroki,Sawada Kozue,Hashimoto Yukari,Ohshita Tomohiko,Takahashi Tetsuya,Ohtsuki Toshiho,Matsumoto Masayasu
Abstract
Abstract
Background
Prospective memory (PM) is one of the most important cognitive domains in everyday life. The neuronal basis of PM has been examined by a large number of neuroimaging and neuropsychological studies, and it has been suggested that several cerebral domains contribute to PM. For these activation studies, a constellation of experimental PM trials was developed and adopted to healthy subjects. In the present study, we used a widely used clinical PM assessment battery to determine the lesions attributable to PM failure, with the hypothesis that lesion-symptom analysis using diffusion tensor imaging (DTI) in subjects with diffuse axonal injury (DAI) can reveal the neuronal basis of PM in everyday life.
Results
Fourteen DAI patients (age: range of 18-36, median 24) participated in this study. PM failure was scored in the range of 0-6 using three sub-tests of the Rivermead Behavioural Memory Test. The PM scores of DAI patients were in the range of 2-6 (median 4.5, inter-quartile range 2.25). The severity of axonal injury following DAI was examined using fractional anisotropy (FA), one of the DTI parameters, at voxel level in each subject. We then obtained clusters correlated with PM failure by conducting voxel-based regression analysis between FA values and PM scores. Three clusters exhibited significant positive correlation with PM score, the left parahippocampal gyrus, left inferior parietal lobe, and left anterior cingulate.
Conclusions
This is the first lesion-symptom study to reveal the neuronal basis of PM using DTI on subjects with DAI. Our findings suggest that the neuronal basis of PM is in the left parahippocampal gyrus, left inferior parietal lobe, and/or left anterior cingulate. These findings are similar to those of previous activation studies with loading experimental PM tasks.
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,General Neuroscience
Reference39 articles.
1. McDaniel MA, Einstein GO: Prospective memory: a new research enterprise. Prospective memory. An overview and synthesis of an emerging field. Edited by: McDaniel MA, Einstein GO. 2007, California: Sage Publications, 1-12.
2. Burgess PW, Veitch E, de Lacy Costello A, Shallice T: The cognitive and neuroanatomical correlates of multitasking. Neuropsychologia. 2000, 38: 848-863. 10.1016/S0028-3932(99)00134-7.
3. Kliegel M, Eschen A, Thöne-Otto AI: Planning and realization of complex intentions in traumatic brain injury and normal aging. Brain Cogn. 2004, 56: 43-54. 10.1016/j.bandc.2004.05.005.
4. McDaniel MA, Einstein GO: Cognitive neuroscience of prospective memory. Prospective memory. An overview and synthesis of an emerging field. Edited by: McDaniel MA, Einstein GO. 2007, California: Sage Publications, 171-190.
5. Okuda J, Fujii T, Yamadori A, Kawashima R, Tsukiura T, Fukatsu R, Suzuki K, Ito M, Fukuda H: Participation of the prefrontal cortices in prospective memory: evidence from a PET study in humans. Neurosci Lett. 1998, 253: 127-130. 10.1016/S0304-3940(98)00628-4.
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献