Aestivation and hypoxia-related events share common silent neuron trafficking processes

Author:

Giusi Giuseppina,Zizza Merylin,Facciolo Rosa Maria,Chew Shit Fun,Ip Yuen Kwong,Canonaco Marcello

Abstract

Abstract Background The availability of oxygen is a limiting factor for neuronal survival since low levels account not only for the impairment of physiological activities such as sleep-wake cycle, but above all for ischemic-like neurodegenerative disorders. In an attempt to improve our knowledge concerning the type of molecular mechanisms operating during stressful states like those of hypoxic conditions, attention was focused on eventual transcriptional alterations of some key AMPAergic silent neuronal receptor subtypes (GluR1 and GluR2) along with HSPs and HIF-1α during either a normoxic or a hypoxic aestivation of a typical aquatic aestivator, i.e. the lungfish (Protopterus annectens). Results The identification of partial nucleotide fragments codifying for both AMPA receptor subtypes in Protopterus annectens displayed a putative high degree of similarity to that of not only fish but also to those of amphibians, birds and mammals. qPCR and in situ hybridization supplied a very high (p < 0.001) reduction of GluR1 mRNA expression in diencephalic areas after 6 months of aerial normoxic aestivation (6mAE). Concomitantly, high (p < 0.01) levels of HSP70 mRNAs in hypothalamic, mesencephalic and cerebellar areas of both 6mAE and after 6 months of mud hypoxic aestivation (6mMUD) were detected together with evident apoptotic signals. Surprisingly, very high levels of GluR2 mRNAs were instead detected in thalamic along with mesencephalic areas after 6 days of normoxic (6dAE) and hypoxic (6dMUD) aestivation. Moreover, even short- and long-term hypoxic states featured high levels of HIF-1α and HSP27 transcripts in the different brain regions of the lungfish. Conclusions The distinct transcriptional variations of silent neurons expressing GluR1/2 and HSPs tend to corroborate these factors as determining elements for the physiological success of normoxic and hypoxic aestivation. A distinct switching among these AMPA receptor subtypes during aestivation highlights new potential adaptive strategies operating in key brain regions of the lungfish in relation to oxygen availability. This functional relationship might have therapeutic bearings for hypoxia-related dysfunctions, above all in view of recently identified silent neuron-dependent motor activity ameliorations in mammals.

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3