In Vitro Assessment of Tobacco Smoke Toxicity at the BBB: Do Antioxidant Supplements Have a Protective Role?

Author:

Hossain Mohammed,Mazzone Peter,Tierney William,Cucullo Luca

Abstract

Abstract Background Tobacco smoke (TS) contains highly reactive oxygen species (such as hydrogen peroxide, peroxynitrite, etc), which cause oxidative damage in vascular tissue and may exacerbate inflammatory events leading to the blood-brain barrier damage (BBBD) which accompanies the development of a variety of neurological disorders. Smokers often have elevated leukocyte counts (primarily neutrophils and monocytes), and significant decreases in plasma alpha-tocopherol (vitamin E) and ascorbic acid (vitamin C) levels due to increased anti-oxidative mobilization in response to oxidative stress evoked by TS. For this purpose, using static culture systems and a well-established dynamic in vitro BBB model (DIV-BBB) we tested the hypothesis that antioxidant vitamin supplementation (E and/or C) can protect the BBB during exposure to whole soluble TS. Results TS exacerbates inflammatory events and leads to endothelial overexpression of vascular adhesion molecules (VCAM-1, P-selectin and E-selectin), release of pro-inflammatory cytokines (TNF-α and IL-6) and nitric oxide (NO), release and activation of matrix metalloproteinases (MMP-2 and MMP-9), monocytic maturation into macrophages, and adhesion to the vascular endothelium. Furthermore, TS altered the normal glucose metabolic behaviour of in vitro BBB capillaries and caused a period of transient anaerobic respiration to meet the cellular bioenergetic demand. Pre-treatment with antioxidant vitamins (C and/or E) effectively reduced the pro-inflammatory activity associated with TS, protecting the viability and functions of the BBB. Conclusion Our results have shown that loss of endothelial viability as well as BBB function and integrity caused by TS exposure can be prevented or at least reduced by normal physiologic concentrations of antioxidant vitamins in vitro.

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3