The role of the t-SNARE SNAP-25 in action potential-dependent calcium signaling and expression in GABAergic and glutamatergic neurons

Author:

Tafoya Lawrence CR,Shuttleworth C William,Yanagawa Yuchio,Obata Kunihiko,Wilson Michael C

Abstract

Abstract Background The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, comprised of SNAP-25, syntaxin 1A, and VAMP-2, has been shown to be responsible for action potential (AP)-dependent, calcium-triggered release of several neurotransmitters. However, this basic fusogenic protein complex may be further specialized to suit the requirements for different neurotransmitter systems, as exemplified by neurons and neuroendocrine cells. In this study, we investigate the effects of SNAP-25 ablation on spontaneous neuronal activity and the expression of functionally distinct isoforms of this t-SNARE in GABAergic and glutamatergic neurons of the adult brain. Results We found that neurons cultured from Snap25 homozygous null mutant (Snap25 -/-) mice failed to develop synchronous network activity seen as spontaneous AP-dependent calcium oscillations and were unable to trigger glial transients following depolarization. Voltage-gated calcium channel (VGCC) mediated calcium transients evoked by depolarization, nevertheless, did not differ between soma of SNAP-25 deficient and control neurons. Furthermore, we observed that although the expression of SNAP-25 RNA transcripts varied among neuronal populations in adult brain, the relative ratio of the transcripts encoding alternatively spliced SNAP-25 variant isoforms was not different in GABAergic and glutamatergic neurons. Conclusion We propose that the SNAP-25b isoform is predominantly expressed by both mature glutamatergic and GABAergic neurons and serves as a fundamental component of SNARE complex used for fast synaptic communication in excitatory and inhibitory circuits required for brain function. Moreover, SNAP-25 is required for neurons to establish AP-evoked synchronous network activity, as measured by calcium transients, whereas the loss of this t-SNARE does not affect voltage-dependent calcium entry.

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3