Author:
Kim Myung-Sun,Jang Kyoung-Mi,Che Huije,Kim Do-Won,Im Chang-Hwan
Abstract
Abstract
Background
We investigated the electrophysiological correlates of object-repetition effects using an object categorization task, standardized low-resolution electromagnetic tomography (sLORETA), and individual magnetic resonance imaging. Sixteen healthy adults participated, and a total of 396 line drawings of living and non-living objects were used as stimuli. Of these stimuli, 274 were presented only once, and 122 were repeated after one to five intervening pictures. Participants were asked to categorize the objects as living or non-living things by pressing one of two buttons.
Results
The old/new effect (i.e., a faster response time and more positive potentials in response to repeated stimuli than to stimuli initially presented) was observed at 350-550 ms post-stimulus. The distributions of cortical sources for the old and new stimuli were very similar at 250-650 ms after stimulus-onset. Activation in the right middle occipital gyrus/cuneus, right fusiform gyrus, left superior temporal gyrus, and right inferior frontal gyrus was significantly reduced in response to old compared with new stimuli at 250-350, 350-450, 450-550, and 550-650 ms after stimulus-onset, respectively. Priming in response time was correlated with the electrophysiological priming at left parietal area and repetition suppression at left superior temporal gyrus in 450-550 ms.
Conclusions
These results suggest processing of repeated objects is facilitated by sharpening perceptual representation and by efficient detection or attentional control of repeated objects.
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,General Neuroscience
Reference60 articles.
1. Henson RN: Neuroimaging studies of priming. Prog Neurobiol. 2003, 70: 53-81. 10.1016/S0301-0082(03)00086-8.
2. Grill-Spector K: Visual priming. Learning and memory: a comprehensive reference. Eichenbaum. Volume 3. Edited by: Byrne J. 2008, Oxford: Elsevier, 219-236. First edition
3. Schacter DL, Buckner R: Priming and brain. Neuron. 1998, 20: 185-195. 10.1016/S0896-6273(00)80448-1.
4. Schacter DL, Wig GS, Stevens WD: Reductions in cortical activity during priming. Curr Opin Neurobiol. 2007, 17: 171-176. 10.1016/j.conb.2007.02.001.
5. Vuilleumier P, Henson RN, Driver J, Dolan RJ: Multiple levels of visual object constancy revealed by event-related fMRI of repetition priming. Nat Neurosci. 2002, 5: 491-499. 10.1038/nn839.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献