Exercise-induced motor improvement after complete spinal cord transection and its relation to expression of brain-derived neurotrophic factor and presynaptic markers

Author:

Macias Matylda,Nowicka Dorota,Czupryn Artur,Sulejczak Dorota,Skup Małgorzata,Skangiel-Kramska Jolanta,Czarkowska-Bauch Julita

Abstract

Abstract Background It has been postulated that exercise-induced activation of brain-derived neurotrophic factor (BDNF) may account for improvement of stepping ability in animals after complete spinal cord transection. As we have shown previously, treadmill locomotor exercise leads to up-regulation of BDNF protein and mRNA in the entire neuronal network of intact spinal cord. The questions arise: (i) how the treadmill locomotor training, supplemented with tail stimulation, affects the expression of molecular correlates of synaptic plasticity in spinal rats, and (ii) if a response is related to BDNF protein level and distribution. We investigated the effect of training in rats spinalized at low thoracic segments on the level and distribution of BDNF immunoreactivity (IR) in ventral quadrants of the lumbar segments, in conjunction with markers of presynaptic terminals, synaptophysin and synaptic zinc. Results Training improved hindlimb stepping in spinal animals evaluated with modified Basso-Beattie-Bresnahan scale. Grades of spinal trained animals ranged between 5 and 11, whereas those of spinal were between 2 and 4. Functional improvement was associated with changes in presynaptic markers and BDNF distribution. Six weeks after transection, synaptophysin IR was reduced by 18% around the large neurons of lamina IX and training elevated its expression by over 30%. The level of synaptic zinc staining in the ventral horn was unaltered, whereas in ventral funiculi it was decreased by 26% postlesion and tended to normalize after the training. Overall BDNF IR levels in the ventral horn, which were higher by 22% postlesion, were unchanged after the training. However, training modified distribution of BDNF in the processes with its predominance in the longer and thicker ones. It also caused selective up-regulation of BDNF in two classes of cells (soma ranging between 100-400 μm2 and over 1000 μm2) of the ventrolateral and laterodorsal motor nuclei. Conclusion Our results show that it is not BDNF deficit that determines lack of functional improvement in spinal animals. They indicate selectivity of up-regulation of BDNF in distinct subpopulations of cells in the motor nuclei which leads to changes of innervation targeting motoneurons, tuned up by locomotor activity as indicated by a region-specific increase of presynaptic markers.

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3