Multi-target action of the novel anti-Alzheimer compound CHF5074: in vivo study of long term treatment in Tg2576 mice

Author:

Sivilia Sandra,Lorenzini Luca,Giuliani Alessandro,Gusciglio Marco,Fernandez Mercedes,Baldassarro Vito Antonio,Mangano Chiara,Ferraro Luca,Pietrini Vladimiro,Baroc Maria Francesca,Viscomi Arturo R,Ottonello Simone,Villetti Gino,Imbimbo Bruno P,Calzà Laura,Giardino Luciana

Abstract

Abstract Background Alzheimer disease is a multifactorial disorder characterized by the progressive deterioration of neuronal networks. The pathological hallmarks includes extracellular amyloid plaques and intraneuronal neurofibrillary tangles, but the primary cause is only partially understood. Thus, there is growing interest in developing agents that might target multiple mechanisms leading to neuronal degeneration. CHF5074 is a nonsteroidal anti-inflammatory derivative that has been shown to behave as a γ-secretase modulator in vitro and to inhibit plaque deposition and to reverse memory deficit in vivo in transgenic mouse models of Alzheimer’s disease (AD). In the present study, the effects of a long-term (13-month) treatment with CHF5074 on indicators of brain functionality and neurodegeneration in transgenic AD mice (Tg2576) have been assessed and compared with those induced by a prototypical γ-secretase inhibitor (DAPT). Results To this end, plaque-free, 6-month-old Tg2576 mice and wild-type littermates were fed with a diet containing CHF5074 (125 and 375 ppm/day), DAPT (375 ppm/day) or vehicle for 13 months. The measured indicators included object recognition memory, amyloid burden, brain oligomeric and plasma Aβ levels, intraneuronal Aβ, dendritic spine density/morphology, neuronal cyclin A positivity and activated microglia. Tg2576 mice fed with standard diet displayed an impairment of recognition memory. This deficit was completely reverted by the higher dose of CHF5074, while no effects were observed in DAPT-treated mice. Similarly, amyloid plaque burden, microglia activation and aberrant cell cycle events were significantly affected by CHF5074, but not DAPT, treatment. Both CHF5074 and DAPT reduced intraneuronal Aβ content, also increasing Aβ40 and Aβ42 plasma levels. Conclusions This comparative analysis revealed a profoundly diverse range of clinically relevant effects differentiating the multifunctional anti-inflammatory derivative CHF5074 from the γ-secretase inhibitor DAPT and highlighted unique mechanisms and potential targets that may be crucial for neuroprotection in mouse models of AD.

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,General Neuroscience

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3